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A Genome-Scale Modeling Approach to Quantify
Biofilm Component Growth of Salmonella
Typhimurium
Nicholas Ribaudo, Xianhua Li, Brett Davis, Thomas K. Wood, and Zuyi (Jacky) Huang

Abstract: Salmonella typhimurium (S. typhimurium) is an extremely dangerous foodborne bacterium that infects both
animal and human subjects, causing fatal diseases around the world. Salmonella’s robust virulence, antibiotic-resistant
nature, and capacity to survive under harsh conditions are largely due to its ability to form resilient biofilms. Multi-
ple genome-scale metabolic models have been developed to study the complex and diverse nature of this organism’s
metabolism; however, none of these models fully integrated the reactions and mechanisms required to study the influence
of biofilm formation. This work developed a systems-level approach to study the adjustment of intracellular metabolism
of S. typhimurium during biofilm formation. The most advanced metabolic reconstruction currently available, STM_v1.0,
was 1st extended to include the formation of the extracellular biofilm matrix. Flux balance analysis was then employed to
study the influence of biofilm formation on cellular growth rate and the production rates of biofilm components. With
biofilm formation present, biomass growth was examined under nutrient rich and nutrient deficient conditions, resulting
in overall growth rates of 0.8675 and 0.6238 h−1 respectively. Investigation of intracellular flux variation during biofilm
formation resulted in the elucidation of 32 crucial reactions, and associated genes, whose fluxes most significantly adapt
during the physiological response. Experimental data were found in the literature to validate the importance of these genes
for the biofilm formation of S. typhimurium. This preliminary investigation on the adjustment of intracellular metabolism
of S. typhimurium during biofilm formation will serve as a platform to generate hypotheses for further experimental study
on the biofilm formation of this virulent bacterium.
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Practical Application: Salmonella is most commonly a foodborne pathogen that causes human diseases. It survives in
the hostile environmental by forming biofilms. This work presents the 1st systems-level investigation of the intracellular
metabolic adaptation of this pathogen during the biofilm formation. The metabolic reactions identified in this work for
their important role in Salmonella biofilm formation can be further used as the targets for optimizing antibiotic selection
to combat Salmonella biofilm.

Introduction
Pathogenic bacteria are a serious human health threat around

the world; hence, they are widely studied to better combat human
infection. Simple antibiotics were a primary defense, but unfor-
tunately, the evolution of such bacteria to resist these antibiotics
has resulted in the resurfacing of an old threat, untreatable bac-
terial infection (Björkman and others 1998). Salmonella enterica is
one of the most commonly studied human pathogens due to its
innate virulence, impact on society, and well-studied metabolic
pathways (Kolter and Greenberg 2006; Thiele and others 2011).
Salmonellais most commonly a foodborne pathogen, but has also
created infectious threats through various surface interactions such
as on medical devices (Gibson 2000; Kolter and Greenberg 2006).
It infects both animal and human subjects, causing diseases such
as typhoid, gastroenteritis, bacteremia, and many more infectious
ailments ( Jun 2006). In the United States alone, more than 500
human deaths occur annually due to infection by various strains
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of Salmonella, 95% of which are due to foodborne contamina-
tion (Mead and others 1999). The impact and severity of this
pathogen is even greater in developing countries where sterility
in the food industry is weaker. Salmonella contamination in food
products primarily takes place through its attachment, survival,
and proliferation on surfaces within food production facilities.

Salmonella’s ability to survive under varying environmental con-
ditions, resist antibiotic influence, and remain virulent is largely
due to its ability to form resilient biofilms (Bower 1999; Stepanović
and others 2004). Biofilms are multicellular populations of mi-
croorganisms that are connected through extracellular polymeric
substances (EPSs), which provide the structural support for bac-
terial survival, proliferation, and virulence (Stoodley and others
2002). The structuralimplication of biofilm formation is far from
the only impact that biofilms have on cell viability. The protec-
tive layer contributes to sophisticated cell–cell signaling that allows
for defense mechanisms when the microbial communities are un-
der stress, therefore stimulating survival (Gibson 2000; Stoodley
and others 2002). A number of cells lay dormant in the biofilm
community, protected by their extracellular matrix, allowing for
enhanced protection against infection or environmental stress (Fux
and others 2005). Although a large number of cells can be elim-
inated under such stresses, these dormant cells are less affected
since antimicrobials primarily have been designed to eliminate
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metabolically active bacteria. Their survival allows for further
proliferation and regeneration of their cellular community held
together by the biofilm (Kell and others 2015). Such mechanisms
are primary contributors to the evolution of antibiotic resistance
and overall survival.

Salmonella’s bacterial biofilms are capable of forming on animal
surfaces and tissues, sediments and soils, as well as plastic, steel,
glass, and a variety of other abiotic surfaces (Romling and others
1998; Gibson 2000; Solano and others 2002). This versatility of
biofilm formation is due to the microorganism’s ability to produce
varying biofilms that exhibit diversity in structure, composition,
and metabolic responses under diverse environmental conditions
(Solano and others 2002; Kolter and Greenberg 2006; Kim and
others 2013). The exceptional diversity of their formation and
function makes studying biofilms in nature very difficult (Beloin
and Ghigo 2005).

To better combat the complexity and diverse nature of
metabolic pathways, such as those involved in the formation of
biofilms, a genome-scale metabolic modeling approach can be
employed. The applications of such modeling approaches have
significantly influenced the ability to accomplish high-throughput
analysis of metabolic networks (Kim and others 2012). Comput-
erized reconstructions of genome-scale metabolic networks in
MATLAB provide a platform to perform in silico simulations that
elucidate the mechanistic relationship between genotype and phe-
notype. In other words, conducting studies of cellular metabolism
at the genome level leads to a better understanding of phenotypic
variation. Genome-scale models are used to accurately predict
metabolic trends and draw important conclusions on cellular
facets such as gene knockout results, optimal growth patterns,
substrate preferences, changes in gene expression profiles, and
shifts in intracellular metabolic fluxes under varying conditions
(Price and others 2003). Understanding these aspects of cellular
metabolism, and the detailed mechanisms behind them, provides
an opportunity to better combat human diseases, virulent bacteria,
and other infectious microorganisms (Butcher and others 2004;
Kim and others 2012; Mardinoglu and others 2013). There are
currently over 150 predictive metabolic network reconstructions
available, spanning both prokaryotic and eukaryotic organisms
(Feist and others 2008). These genome-scale metabolic models
are currently being employed in the development of novel drugs
to fight infections without consequential side effects. Calculated
metabolic responses help to prioritize drug targets and design
effective clinical trials (Butcher and others 2004). Genome-scale
metabolic modeling approaches were developed to study mi-
crobial biofilm formation since 2012. In particular, Sigurdsson
and others 2012 performed flux balance analysis (FBA) in a
genome-scale model of Pseudomonas aeruginosa and predicted the
microbial growth in the biofilm nutrient environment. The trend
for biofilm formation, however, was not predicted in this paper. In
order to address this issue, our group developed a systems-biology
approach to indicate the trend of biofilm formation of P. aeruginosa
when single genes were inhibited (Xu and others 2013) and under
various environmental conditions (Xu and others 2015). In partic-
ular, the change of intracellular fluxes in the genome-scale model
was used to indicate the trend of biofilm formation. Vital-Lopez
and others 2015 presented a similar approach but used the change
in the metabolite concentrations to indicate the biofilm formation
of P. aeruginosa. Chen and others 2016 presented another model
for solving biofilm process of P. aeruginosa in both time and spatial
aspect, with indications of biomass and metabolic byproducts
change. Other studies are either focused on capturing the spatial

heterogeneity of microbial community in a biofilm (Mazumdar
and others 2013) or solving the interaction of biofilm with
extracellular components ( Jayasinghe and others 2014). In the
aforementioned approaches, no reaction was included for the pro-
duction rates of biofilm components such as exopolysaccharide,
lipopolysaccharide (LPS), and enterobacterial common antigen
(ECA). The biofilm formation rate was thus not directly predicted
from these approaches, although some indirect indications such as
the change in metabolic fluxes or metabolite concentrations were
used to monitor biofilm formation. In order to address this issue,
biofilm formation reactions were integrated with a genome-scale
model for the 1st time in this work to study the biofilm formation
of the notorious foodborne pathogen Salmonella Typhimurium.

There have been multiple genome-scale metabolic models
constructed for S. typhimurium thus far. One of the starting
metabolic reconstructions (MRs), iRR1083, was composed of
1083 genes, 1087 network reactions, and 744 unique metabolites
(Raghunathan and others 2009). Following this, the BRecon
model furthered the depth and accuracy of the previous model.
This model was composed of 1222 genes, 2108 network reac-
tions, and 1084 unique metabolites (Thiele and others 2011).
The 3rd published model, named as iMA945, was constructed
from previous Escherichia coli (E. coli) models, such as iAF1260,
using homology and other bioinformatics criteria. This model
contained 945 genes, 1964 network reactions, and 1036 unique
metabolites (AbuOun and others 2009). More recently, a con-
sensus reconstruction was performed, where over 20 experts
in S. typhimurium and systems biology collaborated to produce
a more comprehensive model with more detail and accuracy
than ever before. This published consensus model, known as
STM_v1.0, encompasses 1270 genes, 2201 network reactions,
and 1119 unique metabolites (Thiele and others 2011). Although
these mentioned models are comprehensive representations of
S. typhimurium’s metabolic network, the reactions for biofilm for-
mation have not yet been included. Additionally, no systems-level
approaches have been developed to study the biofilm formation of
S. typhimurium. The primary goals of this work are to 1st extend
the current metabolic model of S. typhimurium in MATLAB,
to include certain associated reactions and metabolites that are
correlated with biofilm formation, and to develop a systems-level
approach to investigate the adjustment of intracellular metabolism
that occurs during biofilm growth.

Methods

Original genome-scale model for S. typhimurium
The starting MR used in this work was a recently updated

version of the Salmonella model, called as STM_v1.0, which was
previously described in Thiele and others 2011. The version of
STM_v1.0 has been extended to include additional information
gathered over the years since its initial publication. This updated
model, obtained directly through Ines Thiele’s team by personal
contact, was composed of 1271 total genes, 2546 total network
reactions, and 1802 total metabolites prior to the extension
performed in this study. STM_v1.0 is currently the most compre-
hensive genome-scale metabolic model for S. typhimurium, having
integrated and/or built upon all preceding models. Significant
renovations from previous models include accounting for the
periplasm compartment between the cytoplasm and extracellular
space, addition of virulence characteristics that are specific to
Salmonella (such as O-antigen production, which is involved in
ECA and mature LPS synthesis), incorporation of thermodynamic
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information, and supplementation of widespread support data
for reactions and their associated genes (Thiele and others 2011).
STM_v1.0 was chosen as the initial model in this work due to its
renewed and comprehensive nature.

Extension of the metabolic model of S. typhimurium
In order to explore the intracellular metabolism of S. ty-

phimurium during the biofilm formation, the extension of the
starting Salmonella metabolic model was required. Reactions and
metabolites associated with the direct formation of biofilm were
not present in STM_v.10, therefore, their review, understanding,
and addition to the current model were necessary. Initially, a lit-
erature review was conducted to better understand the cellular
metabolism of S. typhimurium under biofilm growth conditions.
The following question needed to be answered: What essential
genes are involved during the formation of the extracellular biofilm
matrix? Determining the reactions that these genes encode for,
and the metabolites directly involved in these reactions, was also
an essential aspect of the literature review.

A precedent genetic analysis of biofilm formation in Salmonella
was the primary starting point for the investigation of essential
biofilm components (Solano and others 2002). This study deter-
mined that colanic acid, LPS, ECA, and cellulose are essential
components of a fully expressed biofilm when in nutrient rich
conditions such as lysogeny broth (LB) medium (in vitro) or animal
cell tissue (in vivo) (Solano and others 2002). However, variations
in growth media revealed that biofilm composition and regulation
are highly dependent on environmental conditions (Solano and
others 2002). This finding has been strongly backed by a vari-
ety of other studies (Romling 2005; Kolter and Greenberg 2006;
Kim and others 2013). Cellulose was determined as a predominant
biofilm component, and largely comprises the EPSs that form the
biofilm matrix (Solano and others 2002; de Rezende and others
2005). Solano established that cellulose is the only contributing
component of the biofilm formed in nutrient deficient media,
such as on an abiotic surface (Solano and others 2002). These re-
sults were also consistent with multiple other studies (Prouty and
Gunn 2003; Jonas and others 2007). Colanic acid is also not re-
quired for the biofilm formation of Salmonella on abiotic surfaces

(Gibson 2000; Prouty and Gunn 2003), and the production of
colanic acid hinders virulence and successful infection (Mouslim
and others 2004). To concentrate on biofilm formation in a vir-
ulent setting, as well as focus efforts toward growth in deficient
media, colonic acid was excluded in this model extension.

Due to its heavily contributing nature in biofilm formation,
cellulose was a primary focus throughout this work. There are
2 operons, bcsABZD and bcsEFG, which are required for cellu-
lose biosynthesis in Salmonella (Solano and others 2002). Of these
genes, bcsA is the most essential as it codes for the cellulose synthase
catalytic subunit that utilizes uridine-diphosphate (UDP) glucose,
a nucleotide sugar molecule, to form and extend the polysac-
charide that is cellulose (Kanehisa and Goto 2000; Kanehisa and
others 2015). The production and metabolic biosynthesis path-
ways of both LPS and ECA were also key focuses in this work.
The LPS biosynthesis pathway begins with UDP-N-acetyl-D-
glucosamine, and after several enzymatic steps, ultimately yields a
complete LPS molecule. LPS later reacts with the end product of
ECA biosynthesis, via an O-antigen translocase enzyme coded for
by wzxE (STM3926), to form mature LPS (Kanehisa and Goto
2000; Solano and others 2002; Kanehisa and others 2015). This
mature LPS is a primary contributor to biofilm formation in nu-
trient rich conditions.

The genome-scale MR for S. typhimurium, STM_v1.0 (Solano
and others 2002), was extended to include the necessary reactions
for biofilm formation in a virulent state. In order to extend the cur-
rent Salmonella model to include cellulose production, cellulose
itself was added into the model by creating exchange reactions for 2
separate cellulose metabolites. These necessary exchange reactions
sanction the uptake of the cellulose metabolites, which allows for
their use in subsequent reactions throughout the model. The 1st
metabolite (that is, Cellulosen) was an initial cellulose molecule,
and the 2nd (that is, Cellulosen+1) was an extended chain of cellu-
lose after the addition of glucose from UDP-glucose, which takes
place via cellulose synthase during the cellulose formation reaction
shown in Eq. (1) (Kanehisa and Goto 2000; Kanehisa and others
2015):

UDP − glucose + Cellulosen ⇒ UDP + Cellulosen+1 (1)

Figure 1–The genome-scale metabolic model is subjected to FBA with a defined objective function to quantify the biomass growth rate and the
production rates of biofilm components. The environmental conditions are integrated in the modelby the upper and lower bounds of reaction fluxes,
that is, Ubi and Lbi. In particular, the upper and lower bounds of those exchange reactions for extracellular metabolites/nutrients to mimic the rich
and minimal medium conditions as suggested in Raghunathan and others 2009. Based on the stoichiometric and capacity constraints, an optimal flux
distribution is calculated within the bounds of the allowable solution space to quantify possible maximum objective function, vbiomass+biofilm.
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All of the reactions associated with the biosynthesis of LPS,
ECA, and the ultimately mature combination of LPS and ECA
(represented by LPS-ECA in the following text) were already
present in STM_v1.0; therefore, their addition was not necessary.
However, to incorporate them into a complete biofilm growth
reaction, the end-product reactions of these metabolites were
taken into account. The added cellulose synthase reaction, and
the culminating reactions for LPS and ECA, and the original
biomass growth reaction were used to construct the biofilm plus
biomass growth reaction displayed in Eq. (2). This overall biofilm,
which is represented by the combination of cellulose, ECA, and
LPS, plus biomass growth reaction, was also introduced into to
the STM_v1.0 model. This extended model was referred to as
STM_v2.0 throughout experimentation. In addition to the reac-
tions shown in STM_v1.0 model, STM_v2.0 included exchange
reactions for the new cellulose metabolites, the cellulose forma-
tion reaction, and a biofilm formation reaction that castoff of the
final reactions in the LPS and ECA biosynthesis pathways.

pctbiomass ×μbiomass + (1 − pctbiomass) [pctcellulose × vcellulose

+ (1 − pctcellulose) × vLPS−ECA] → Environment (2)

where μbiomass refers to the cellular mass growth rate (h–1), vcellulose

refers to the production rate of cellulose (mmol�gDW−1h−1),
and vLPS-ECA refers to the production rate of LPS-ECA
(mmol�gDW−1h−1). The coefficient pctbiomass represents the mass
percentage of the biomass in the biomass and biofilm mixture.
pctbiomass was initially set to 0.35 that indicates 35% of the biomass-
biofilm mixture is cellular biomass. This expected pctbiomass is based
on the collected data and concluding results from multiple studies
on biofilm formation (Jahn 1998; Laspidou and Rittmann 2004;
Velten and others 2007). pctbiomass was further varied in FBA to
study the scenarios in which the ratio of cellular biomass to biofilm
changes during biofilm growth. pctcellulose is a factor that indicates
the mass percentage of cellulose in the extracellular biofilm matrix
(that is, the mixture of cellulose and LPS-ECA). A large pctcellulose

indicates that cellulose is the primary component in the biofilm
matrix. The reaction flux of Eq. (2) is represented as vbiomass+biofilm

for FBA.

Flux balance analysis to quantify the biofilm formation
of S. typhimurium

FBA is extensively used in the field of systems biology to bet-
ter understand the functions of biochemical metabolic networks,

Figure 2–Determining the changes of intracellular metabolic fluxes during biofilm formation. Step 1 involves setting up the metabolic model to function
based on the appropriate conditions. The 1st condition was without biofilm formation (the control), and the 2nd was with biofilm formation. Step 2 is
to run an ACHR algorithm to generate predicted flux distributions of every metabolic reaction for each of the 2 model simulations. Step 3 is to compare
the changes in flux distributions between the 2 conditions, and determine the magnitude of flux variation, which involves both steps 4 and 5.
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Table 1–Simulation results of biomass growth and biofilm formation in a minimal medium.

Simulation conditions
Cellular mass growth rate

(h–1)

Production rate of
LPS-ECA

(mmol�gDW−1h−1)

Production rate of
cellulose

(mmol�gDW−1h−1)

Planktonic condition (that is, no
biofilm formation)

1.0053 0 0

Matured biofilm (100% cellulose
mass)

0.6238 0 1.1584

pctbiomass was set to 0.35, and pctcellulose was equal to 1.0.

because it allows for the quantifiable and dynamic interpretation
of metabolic physiology (Varma and Palsson 1994; Raman and
Chandra 2009). On the basis of the extended Salmonella model,
FBA was implemented to quantify biomass growth rate and the
production rates of biofilm components cellulose and LPS-ECA in
the nutrient conditions the model is subjected to. Reaction fluxes
are the net rates at which molecules flow through a metabolic
pathway. Every reversible reaction in a pathway has a forward and
reverse rate of reaction, and the combination of these rates equates
to the reaction’s overall flux. At a state of equilibrium, the total
flux of a particular metabolite is zero. Individual reaction fluxes
are regulated by enzymatic action throughout metabolic pathways,
and this cellular regulation is essential for optimal functionality un-
der fluctuating environmental conditions (Orth and others 2010).
FBA is a calculation-based approach for analyzing the regulation of
metabolic pathways throughout an organism’s metabolic network.
This mathematical approach has been a fundamental asset in the
analysis of genome-scale MRs, metabolic engineering, and drug
target identification (Raman and Chandra 2009).

In MATLAB, the genome-scale model has a stoichiometric
matrix (S), which represents all of the metabolic reactions in the
cellular network in correspondence with all of the unique metabo-
lites. The size of the matrix is defined by the number of unique
metabolites (m), represented in individual rows, and the number of
metabolic reactions (n), represented in individual columns. Each
reaction column contains the stoichiometric coefficients for every
participating metabolite, positive for those produced, negative for

those consumed, and zero for all metabolites that are not involved
in the particular reaction. The metabolic flux of every reaction
in the model is represented by the element in the vector (v).
The basis of FBA revolves around satisfying the resulting system
of mass balance equations at steady state. At steady state, the net
fluxes of all metabolites should be zero, and therefore adhere to
Eq. (3):

S × v = 0 (3)

The computational analysis that takes place during FBA solves
for a vector v that satisfies Eq. (3). In STM_v2.0, there are far
more network reactions than unique metabolites, parallel to most
large-scale models, therefore, there exist multiple solutions for this
system of equations. In order to combat this, model constraints are
set to define a specific range of solutions. This does not directly
narrow the results down to a singular solution; however, it defines
an allowable solution space imposed by mass balance constraints
in S, as well as capacity constraints enforced by upper and lower
bounds of reaction fluxes. Defining an objective reaction flux
(named as the objective function in FBA) and focusing on the
optimization of this particular reaction allow for FBA to identify
a precise flux distribution, v.

To study the influence of biofilm formation on the metabolic
network, Eq. (2) was defined as the objective function for FBA,
and maximized through computational analysis. This constraint-
based approach narrows down the possible solution space and

Figure 3–Simulation results for biomass growth rate
and cellulose production rate based on a varying mass
percentage of biomass in the biomass-biofilm matrix
in the minimal medium.
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Table 2–Simulation results of biomass growth and biofilm formation in a rich medium.

Simulation conditions
Cellular mass

growth rate (h–1)

Production rate of
LPS-ECA

(mmol�gDW−1h−1)

Production rate of
cellulose

(mmol�gDW−1h−1)

Planktonic condition (that is, no
biofilm formation)

2.6209 0 0

Matured biofilm 0.8675 0.1611 1.4500

pctbiomass was set to 0.35, and pctcellulose was equal to 0.9.

optimizes biomass growth and the production rates of biofilm
components LPS-ECA and cellulose, given a set of specific bounds
and limitations, as illustrated in Figure 1.

Utilizing Eq. (2) as the objective function, multiple simulations
of FBA were performed on the model. The 1st FBA simulation
was performed in a nutrient deficient medium (that is, minimal
medium). This simulation represents how the biomass and biofilm
would grow on an abiotic surface, such as a medical device or
metal surface in a food production facility. As previously stated,
biofilm formation on an abiotic surface does not involve the pro-
duction of LPS-ECA as the nutrients are simply not enough to
properly fuel their formation (Solano and others 2002; Prouty and
Gunn 2003; Jonas and others 2007). For this simulation, cellulose’s
mass fraction in the extracellular biofilm matrix pctcellulose was in-
creased to 1.0 in order to block the production of LPS-ECA.
This initial FBA simulation adhered to the assumed distribution
of 35% biomass in the objective function, that is, pctbiomass was set
to 0.35 as discussed in the previous section. A simulation was fur-
ther performed (under the same nutrient conditions) varying this
biomass-biofilm distribution (that is, pctbiomass) to better under-
stand how it influences overall growth and productions rates. For
this purpose, the percentage of biomass in the biomass/biofilm
composition pctbiomass was varied from 0.1 to 0.9 in increments
of 0.1. Understanding biofilm growth under these conditions is
essential toward the fight against Salmonella infections through
medical devices and food processing facilities.

To study the influence of environmental conditions, simulations
were performed in a nutrient rich medium where both cellulose
and LPS-ECA are contributing components to biofilm growth
(Solano and others 2002). This simulation assumed that cellulose
made up the majority of the EPS in the formed biofilm (Solano
and others 2002; de Rezende and others 2005), therefore its mass
fraction in the extracellular biofilm pctcellulose was set to 0.9. The in-
fluence of biofilm component compositions on the overall biomass
growth rate was further analyzed. This simulation was performed
by varying the percentages of cellulose in the biofilm reaction
(that is, pctcellulose) to better understand how the distribution of
these components in biofilm formation affects the overall growth
rate of the cell. In particular, pctcellulose was varied from 0.1 to 0.9
in increments of 0.1.

The change of the distributions of intracellular metabolic
fluxes upon the biofilm formation

To determine the range and distribution of flux values for all
reactions in the metabolic network, a Monte Carlo sampling
approach was employed via an artificial centering hit-and-run
(ACHR) algorithm. ACHR, which is provided through the CO-
BRA toolbox (Becker and others 2007; Schellenberger and others
2011), is essentially an algorithm that randomly samples a valid
solution point value within the defined constraints for, however,
many iterations it is asked to complete (Kaufman and Smith 1998;
Schellenberger and Palsson 2008). For these simulations, a total

Figure 4–The biomass growth rate upon the change
in the percentages of cellulose pctcellulose in the
extracellular biofilm matrix.
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of 100000 samples for each metabolic flux were used to make
sure the sampling reaching was fully converged. This allows for an
accurately defined flux distribution of each reaction in the entire
metabolic network. The key here is not the flux distribution itself,
but monitoring the changes or shifts in distributions under varying
conditions. In this particular investigation, the sampling approach
was used to define metabolic flux distributions for the entire model
under the control condition without any biofilm formation, and
then again for the entire model with the biofilm growth reaction
taking place. The resulting flux distributions for the model with
and without biofilm formation were then compared using a com-
parative analysis technique termed NonSimilarity, as described by
Eq. (4).

NonSimilarity = 1 − f T
control × fbiofilm

‖ fcontrol‖ · ‖ fbiofilm‖ (4)

where fcontrol and fbiofilm represent distributions of fluxes of simu-
lations without and with biofilm formation, respectively. If fcontrol

and fbiofilm are the same, the 2nd term in Eq. (4) is equal to 1,
so that the NonSimilarity has a value of 0. On the other hand,
if fcontrol and fbiofilm are orthogonal, NonSimilarity is equal to 1.
Therefore, NonSimilarity is used to identify the metabolic reac-
tions with a large flux change during the biofilm formation. The
reactions with the largest metabolic flux changes indicate how S.
typhimurium changes intracellular metabolism for biofilm forma-
tion. This overall process of metabolic simulation sampling, flux
distribution generation, and comparative analysis is illustrated in
Figure 2.

Results and Discussion

Biomass growth and biofilm formation in the minimal
medium

Using the biofilm formation reaction as the objective function,
FBA was conducted for the analysis of biomass growth rates, as
well as the biofilm matrix component cellulose production rates,

under both a planktonic condition and a matured biofilm con-
dition in the minimal medium. As mentioned in the literature
(Solano and others 2002; Prouty and Gunn 2003; de Rezende
and others 2005; Jonas and others 2007), the production of LPS-
ECA is not present in the Salmonella biofilm in a nutrient defi-
cient medium. The simulation results shown in Table 1 represent
how the biomass and biofilm grow on an abiotic surface, such as
a medical device or metal surface in a food production facility.
In this simulation, cellulose’s contributing factor was increased to
1.0. As indicated in Table 1, the biomass growth rate was de-
creased from 1.0053 to 0.6238 h−1 after S. typhimurium forms
biofilms. This is expected as bacteria are known to slow down
biomass growth and save nutrients to produce extracellular biofilm
matrix.

The initial FBA simulation adhered to the assumed distribu-
tion of 65% biofilm (represented by cellulose in this case as no
LPS-ECA is produced in the minimal medium) and 35% biomass
in the objective function (that is, pctbiomass equal to 0.35), how-
ever, the percentage of biofilm in the complex of the cellular
biomass and biofilm may change over time during the biofilm
formation process. More specifically, there should be less biofilm
matrix formed during the early stages of overall biofilm forma-
tion. Therefore, the percentage of biomass pctbiomass was changed
from 10% to 90% of the total biomass-biofilm mixture in a further
simulation (under the same nutrient condition) to quantify the
cellular growth rate in the minimal medium. For this simulation,
the biomass factor, representing the percentage of biomass in the
biomass-biofilm composition, was varied from 0.1 to 0.9 in in-
crements of 0.1. The results of this simulation are summarized in
Figure 3.

Figure 3 demonstrates that as the contribution of biomass in-
creases in the biomass-biofilm mixture, the overall cellular growth
rate increases as well. On the other hand, the overall production
rates of biofilm formation component (that is, cellulose) decrease.
Both results are consistent with predictions that growth rates and
production rates maintain a direct relationship with component
contribution. If there is less biomass involved, the growth rate of

Figure 5–The production rates of LPS-ECA and
cellulose upon the change in the percentages of
cellulose pctcellulose in the extracellular biofilm matrix.
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Table 3–Top 32 reactions with largest flux changes and NonSimilarity values larger than 0.8.

Reaction index
number

Gene
name(s)

Enzyme EC
number(s) Enzyme names

References indicating
enzyme-biofilm

relevance

1515 mgsA EC:4.2.3.3 Methylglyoxal synthase Lu and others 2014
1358 gldA EC:1.1.1.6 Glycerol dehydrogenase Lu and others 2014
215 nagZ EC:3.2.1.52 β-N-acetylhexosaminidase Nelson 2013
265 ampD ∗ 1,6-anhydro-N-acetylmuramyl-L-alanine

amidase AmpD
Lappann and others 2010

78, 79, 80, 69 fabZ; fabA EC:4.2.1.59;
EC:5.3.3.14

3-Hydroxyacyl-[acyl-carrier-protein]
dehydratase; trans-2-decenoyl-[acyl-carrier
protein] isomerase

Singh and others 2009

95, 96, 97, 86, 89 fabG EC:1.1.1.100 3-Oxoacyl-[acyl-carrier protein] reductase Lai and Cronan 2004
107, 108, 98, 101,

1338
fabF; fabB EC:2.3.1.179;

EC:2.3.1.41
3-Oxoacyl-[acyl-carrier-protein] synthase II;

3-oxoacyl-[acyl-carrier-protein] synthase I
Lai and Cronan 2004

121 gutQ EC:5.3.1.13 Arabinose 5-phosphate isomerase Herzberg and others 2005
1348 kdsB EC:2.7.7.38 3-Deoxy-manno-octulosonate

cytidylyltransferase (CMP-KDO
synthetase)

Strohmaier and others 1995

1349 kdsC EC:3.1.3.45 3-Deoxy-D-manno-octulosonate
8-phosphate phosphatase (KDO 8-P
phosphatase)

Martorana and others 2011

1350 kdsA EC:2.5.1.55 2-Dehydro-3-deoxyphosphooctonate
aldolase (KDO 8-P synthase)

Yeom and others 2012

1374 lpxB EC:2.4.1.182 Lipid-A-disaccharide synthase Albers and others 2007
1547, 1548 kdtA EC:2.4.99.12,

EC:2.4.99.13,
EC:2.4.99.14,
EC:2.4.99.15

3-Deoxy-D-manno-octulosonic-acid
transferase

Tan and Darby 2006

2034 lpxK EC:2.7.1.130 Tetraacyldisaccharide 4′-kinase Youngjae and Jubee 2014
2101 lpxD EC:2.3.1.191 UDP-3-O-[3-hydroxymyristoyl]

glucosamine N-acyltransferase
Albers and others 2007

2108 lpxA; acpP EC:2.3.1.129; ∗ UDP-N-acetylglucosamine acyltransferase;
acyl carrier protein

Albers and others 2007; Mitev
and others 2009

2133 lpxC EC:3.5.1.108 UDP-3-O-[3-hydroxymyristoyl]
N-acetylglucosamine deacetylase

Albers and others 2007

2159 lpxH EC:3.6.1.54 UDP-2,3-diacylglucosamine hydrolase Babinski and others 2002
608 fabI EC:1.3.1.9,

EC:1.3.1.10
Enoyl-[acyl-carrier protein] reductase I Lai and Cronan 2004

1360 No gene
associated

∗

Note:
∗ Indicates that no relevant data were acquired.
pctbiomass was set to 0.35, and pctcellulose was equal to 1.0 in FBA simulations.

such will decrease. The same is true for biofilm formation and the
production rates of its constituents.

Biomass growth and biofilm formation in the rich medium
To study the influence of environmental conditions on biomass

and biofilm formation, the 2nd simulation performed was to access
the influence of biofilm formation on the growth rate of cellular
mass in a nutrient rich medium. In the nutrient rich medium, both
cellulose and LPS-ECA are contributing components to biofilm
growth (Solano and others 2002). This simulation assumed that
cellulose made up the majority of the EPS in the formed biofilm
(Solano and others 2002; de Rezende and others 2005), therefore
its mass fraction pctcellulose in the extracellular biofilm was set to
90%. The influence of pctcellulose on the biofilm formation was
further invested in the next section. In the simulation, the biomass
fraction in the biomass-biofilm mixture was kept the same as the
one used for the minimal medium, that is, pctbiomass was set to
0.35. The resulting cellular growth rate and biofilm component
production rates are outlined in Table 2. The overall growth rate
of cellular biomass and the cellulose production rates are greater in
the rich media simulation when compared to the minimal media.
This indicates that the added nutrients in the rich medium further

stimulate the growth of pathogens and thus the production of
important biofilm components such as cellulose and LPS-ECA
(Solano and others 2002; Prouty and Gunn 2003; de Rezende
and others 2005; Jonas and others 2007).

The influence of biofilm component compositions on the over-
all biomass growth rate was further analyzed by varying the per-
centages of cellulose pctcellulose in the biofilm reaction. The results
of this simulation are illustrated in Figure 4 and 5. It is inter-
esting to see in Figure 4 that the biomass growth rate decreases
as the mass fraction of cellulose in the extracellular biofilm ma-
trix increases. While no direct experimental data have been found
in the literature to prove this, one potential explanation is that
the increasing cellulose in the biofilm inhibits bacterial motil-
ity and thus prevents the bacteria from obtaining new nutrients
for growth. A high biomass growth rate is associated with a low
pctcellulos. This may not happen in reality, as cellulose generally
occupies a large portion of the biofilm matrix.Figure 5 shows
that the production rates of LPS-ECA and cellulose decrease and
increase, respectively, upon the increase of the mass fraction of
cellulose in the extracellular biofilm matrix.The results shown
in Figure 4 and 5 provide hypotheses for further experiment
investigation.
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Variation of intracellular metabolic fluxes during biofilm
formation

In order to validate the modeling approach presented in this
work, the reactions important for the biofilm formation of
S. typhimurium were 1st identified as those with large metabolic
flux change upon the biofilm formation. These reactions were
then compared with experimental data in this section. Specifi-
cally, an ACHR sampling approach was used to define metabolic
flux distributions for the entire model under the control condi-
tion without any biofilm formation, and then again for the entire
model with the biofilm growth reaction taking place. The FBA was
performed for the minimal medium in the ACHR sampling ap-
proach, with pctbiomass and pctcellulose set to 0.35 and 1.0, respec-
tively. The resulting flux distributions for the model with and
without biofilm formation were then compared using NonSimi-
larity defined in Eq. (4). The reactions that exhibited the largest
flux changes, with a NonSimilarity value higher than 0.8 between
the control and biofilm formation conditions, were deemed to
have a significant impact during the growth of biofilm in S. ty-
phimurium.The top 32 reactions and 22 associated genes based on
this criterion are outlined in Table 3, referencing the STM_v2.0

reaction index numbers shown in the Supplementary Material 1,
the KEGG gene names, and the KEGG enzyme (EC) numbers
(Kanehisa and Goto 2000). Other reactions with lower NonSimi-
larity value can be provided upon request.

The comparative analysis of NonSimilarity was based on the dif-
ference in a reaction’s flux distribution from the control condition
of no biofilm formation to the biofilm formation condition. These
reaction fluxes are compared based on the approach outlined in
Figure 2. As an example, typical flux distribution profiles for 2 of
the top reactions listed in Table 3 are shown in Figure 6.

In order to validate the reactions displayed in Table 3 for their
important roles in regulating Salmonella biofilm formation, liter-
ature review on related genes were conducted and summarized
in the following paragraphs. These 22 genes are mainly involved
in the following KEGG pathways: LPS biosynthesis, fatty acid
biosynthesis, fatty acid metabolism, biotin metabolism, propanoate
metabolism, glycerolipid metabolism, amino sugar, and nucleotide
sugar metabolism as shown in Figure 7. Based on the simulation
results and supporting publications shown below, the reactions and
genes listed in Table 3 are the most important with regard to the
formation of biofilm in S. typhimurium. As such, these essential

Figure 6–The flux distribution profiles of reaction #78 (A) and reaction #1515 (B) for both the planktonic condition and the biofilm formation condition.
The genes associated with these 2 reactions can be found in Table 3.
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genes should be the focus of further investigations into the biofilm
formation of S. typhimurium.

Methylglyoxal synthase (mgsA) and glycerol dehydrogenase
(gldA) play important roles in Salmonella growth due to their
involvement in glycolytic pathways. MgsA may have an impact
on glycolysis by controlling the formation of intermediates during

the glycolytic conversion of dihydroxyacetone phosphate (DHAP)
to pyruvate (Cooper and Anderson 1970; Hopper and Cooper
1971; Chakraborty and others 2014). GldA is a nicotinamide ade-
nine dinucleotide oxidized form (NAD+) dependent enzyme that
is involved in the transformation of intracellular dihydroxyace-
tone (DHA) to DHAP, a key glycolytic intermediate (Ribeiro

Figure 7–The distribution of the genes shown in Table 3 that are important to Salmonella biofilm formation in various metabolic pathways. In this figure,
purple dash lines indicate connection between different KEGG pathways; blue lines/texts represent KEGG pathway names; black arrows represent
metabolic reactions; the thick black arrow stands for a cascade of reactions but intermediate products are not shown; black circles and texts represent
molecules; and red texts show the related gene names. The involvement of certain genes in the lipopolysaccharide biosynthesis is further illustrated in
Figure 8.
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and others 2013). GldA is also related with the maintenance of
redox-balanced conditions during cell growth (Ribeiro and oth-
ers 2013). Under stressful environmental conditions, Salmonella
cells experience upregulation in gldA to compensate for induced
changes in growth capabilities (Spory and others 2002; Shoae Has-
sani and others 2008). MgsA and gldA are also related with biofilm
formation because the related molecule methylglyoxal is highly
inhibitory to bacterial growth due to antibiofilm activities (Lu
and others 2014). β-N-acetylhexosaminidase (nagZ), a putative
depolymerase enzyme, displayed significant activity with regard
to dissolve the extrapolymeric substance matrix associated with
bacterial biofilms (Nelson 2013). NagZ is part of the peptidogly-
can cell wall recycling pathway that can elevate the susceptivity of
gram-negative bacteria to β-lactams (Mondon and others 2013).
AmpD protein is also involved in the peptidoglycan cell wall re-
cycling pathway in Salmonella, and ampD deficient mutants have
shown significantly decreased cell growth and biofilm growth ca-
pabilities (Folkesson and others 2004).

FabA, fabB, fabF, fabG, fabI, and fabZ are all essential genes in
fatty acid biosynthesis pathway, fatty acid metabolism, and bi-
otin metabolism. Both fabZ and fabA encode acyl-carrier-protein
(ACP) dehydratases that are directly involved in the fatty acid
biosynthesis pathways of gram-negative bacteria (Heath and Rock
1996). This involvement in fatty acid synthesis is responsible for the
redistribution of membrane fatty acids under survival conditions,
allowing for continued existence (Singh and others 2009). FabF
and fabB are β-ketoacyl-ACP synthases that catalyze the Claisen
condensation reaction during the onset of fatty acid elongation.
This vital role in fatty acid biosynthesis significantly affects cell
viability (Lai and Cronan 2004). FabG is a β-ketoacyl-ACP re-
ductase that catalyzes the redox reaction of β-ketoacyl-ACP to
β-hydroxyacyl-ACP, which is a key step in the fatty acid elon-
gation. Interference with fabG transcription blocks overall cell
growth (Zhang and Cronan 1998). FabI is a nicotinamide ade-
nine dinucleotide reduced form (NADH) dependent enoyl-ACP
reductase that catalyzes the formation of acyl-ACP, which is the
transferring step between the initial fatty acid elongation and the
following elongation cycles (Lai and Cronan 2004). This cycle,
involving the previous steps mentioned (with regard to fabA, fabB,
fabF, fabG, and fabZ) is continually repeated until the acyl-ACP
chain attains its required length to produce lipid A (Heath and
Rock 1996; Lai and Cronan 2004). Lipid A, a bioactive compo-
nent of LPS and ECA formation in the biofilm, is a fatty acid

chain that is produced through fatty acid biosynthesis pathways
(Raetz and Whitfield 2002).

Twelve genes are found by FBA to be involved in LPS biosyn-
thesis pathway: gutQ, kdsA, kdsC, kdsB, lpxA, lpxC, lpxD, lpxH,
lpxB, lpxK, and kdtA.The correlations among these genes are il-
lustrated in Figure 8. LPS is the major component of the surface
of gram-negative bacteria, and the close relationship between the
presence of LPS and biofilm formation has been reported in S.
typhimurium (Mireles and others 2001) and E. coli (Nakao and
others 2012). 3-Deoxy-D-manno-oct-2-ulosonic acid (KDO) is
an essential component of enterobacterial LPS (Strohmaier and
others 1995), and interference in the KDO pathway leads to di-
minished LPS production and growth (Tan and Darby 2006).
GutQ was discovered to play an important role in LPS biosynthesis
(Meredith and Woodard 2005) and biofilm formation (Herzberg
and others 2005), which is an arabinose 5-phosphate isomerase
that converts ribulose 5-phosphate into arabinose 5-phosphate,
an essential step in the initiation of the KDO pathway (Tan and
Darby 2006). KDO 8-P synthase (kdsA) is also required for the
biosynthesis of KDO (Zhou 2000). Under stressful conditions,
kdsA is significantly upregulated by the cell in order to increase
membrane rigidity (Yeom and others 2012). KDO-8-phosphate
phosphatase (kdsC) catalyzes the hydrolysis of KDO-8-phosphate
to KDO and inorganic phosphate in the KDO pathway, which is
a critical step that precedes the transfer of KDO to LPS, there-
fore affecting mature LPS production and biofilm formation in
later stages (Cipolla and others 2010; Martorana and others 2011).
CMP-KDO synthetase (kdsB) catalyzes the activation of KDO and
forms CMP-KDO, which is essential during the incorporation of
KDO into lipid A (Strohmaier and others 1995), a critical pro-
cess for biomass and biofilm growth (Helander and others 1992).
KDO transferase (kdtA) is the key enzyme to catalyze KDO gly-
cosylation of lipid A. In kdtA-deficient mutant, LPS lacks KDO
and hence the size and viability of biofilms are significantly di-
minished (Tan and Darby 2006). The synthesis of lipid X, which
is used later to synthesize lipid IVA and lipid A, from UDP-N-
acetylglucosamine (UDP-GlcNAc), takes place through a num-
ber of enzymatic steps catalyzed by lpxA, lpxC, lpxD, and lpxH
(Nakhamchik 2008). UDP-GlcNAc acyltransferase (lpxA) and
UDP-3-O-(3-hydroxymyristoyl)-GlcN N-acyltransferase (lpxD)
are primary acyl transferases involved in lipid A biosynthesis
(Helander and others 1992; Albers and others 2007). Variation in
lpxA expression is associated with cellular growth under varying

Figure 8–The involvement of genes nagz, lpxA, lpxB, lpxC, lpxD, lpxH, lpxK, kdtA, kdsA, kdsB, kdsC, and gutQ in the lipopolysaccharide biosynthesis.
These reactions are from KEGG database.
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environmental conditions (Albers and others 2007). LpxA, lpxD,
and UDP-3-O-(3-hydroxymyristoyl)-GlcNAc deacetylase (lpxC)
are abundantly expressed during intracellular growth and in
biofilms of Legionella pneumophila, a gram-negative bacteria
(Albers and others 2007). UDP-2,3-diacylglucosamine hydrolase
(lpxH) is required for cell viability in gram-negative bacteria by
the function of cleaving the pyrophosphate bond of the UDP-2,3-
diacylglucosamine to produce lipid X (Babinski and others 2002).
With lipid-A-disaccharide synthase (lpxB), 2 lipid X molecules
are joined together to synthesize lipid A disaccharide (Albers and
others 2007). Tetraacyldisaccharide 4’-kinase (lpxK) catalyzes the
reaction to form lipid IVA from disaccharide lipid A (Garrett and
others 1997; Trent 2001). Under acidic stress, Salmonella upreg-
ulates the expression of lpxK (Youngjae and Jubee 2014).AcpP is
an acyl carrier protein that is essential for LPS biosynthesis and
overall cell viability (Mitev and others 2009). FBA by another re-
search has determined that acpP is an essential gene in the fatty
acid biosynthesis pathway (Barat and others 2012).

Conclusions
This work presented an extended genome-scale metabolic

model for S. typhimurium, which includes essential reactions for
biofilm formation in a virulent state. This extended model, de-
veloped upon STM_v1.0 (Thiele and others 2011), is able to
run high throughput in silico metabolic simulations for prelimi-
nary investigations into the biofilm formation of S. typhimurium
in both rich and minimal media. FBA, Monte Carlo sampling,
and the comparative analysis of flux distribution profiles based
on NonSimilarity defined in Eq. (4) were the primary techniques
employed to carry out these investigations. The results obtained
indicate that the biomass-biofilm distribution of a cellular colony,
the biofilm component composition, and the overall environmen-
tal conditions all influence the development of a matured biofilm
in S. typhimurium. Additionally, the top 32 reactions, and asso-
ciated genes, which have a significant impact during the growth
of biofilm in S. typhimurium, were identified based on flux dis-
tribution variations during biofilm formation. This preliminary
investigation of the adjustment of intracellular metabolism of S.
typhimurium during biofilm formation will serve as a platform to
conduct further studies such as the influence of gene knockouts
on biomass growth and biofilm formation, as well as many other
aspects of the biofilm formation of S. typhimurium.
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