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Abstract Microbial 2,4,6-trinitrotoluene (TNT) biotrans-
formation via sequential nitro-reduction appears a ubiqui-
tous process, but the kinetics of these transformations have
been poorly understood or described. TNT transformation
by Escherichia coli was monitored and a kinetic model for
reductive TNT depletion was developed and experimen-
tally calibrated in this report. Using resting cells of aer-
obically pregrown E. coli, TNT was quickly reduced to
hydroxylaminodinitrotoluenes. The standard Michaelis–
Menten model was modified to include three additional
parameters: product toxicity (Tc), substrate inhibition (Ki),
and intracellular reducing power (RH) limitation. Experi-
mentally measured product toxicity (5.2 μmol TNT/mg
cellular protein) closely matched the best-fit model value
(2.84 μmol TNT/mg cellular protein). Parameter identifi-
ability and reliability (km, Ks, Tc, and Ki) was evaluated and
confirmed through sensitivity analyses and viaMonte Carlo
simulations. The resulting kinetic model adequately de-
scribed TNT reduction kinetics by E. coli resting cells in the
absence or presence of reducing power limitation.

Introduction

2,4,6-Trinitrotoluene (TNT) has been extensively produced
for the generation of explosives, dyestuffs, and photo-
graphic chemicals (Sax and Lewis 1987). It has caused
severe contamination of soil and water, and is mutagenic
and potentially carcinogenic (Dodard et al. 2003; Honeycutt
et al. 1996). Thus, remediation of TNT-contaminated envi-
ronments is deemed necessary to protect human and eco-
system health.

The combined steric and electrophilic effects of multiple
nitro substitutions on the aromatic nucleus make TNTappar-
ently recalcitrant to oxygenolytic transformation (Esteve-
Núñez et al. 2001; Preuss and Rieger 1995) and even
aerobic bacteria tend to transform TNT by sequential re-
ductive transformation of the nitro groups via hydroxyl-
amino to the corresponding amines (Esteve-Núñez et al.
2001; McCormick et al. 1976). Reduction of TNT beyond
diaminonitrotoluenes (DANT) is typically not observed
(Esteve-Núñez et al. 2001; Fuller and Manning 1997;
Labidi et al. 2001). Reductive transformation of TNT has
been documented in many bacterial genera and by many
enzymes, and is generally considered a cometabolic reac-
tion (Fiorella and Spain 1997; Huang et al. 2000; Watrous
et al. 2003), but reports on kinetic analysis of the observed
TNT transformations have been sparse. Efforts to kineti-
cally describe the fate of TNT during reductive cometa-
bolic transformation in a fed-batch reactor yielded poor
results (Daun et al. 1999a,b).

Although factors such as initial TNT concentration
(Daun et al. 1999a,b; Fuller andManning 1997; Gibbs et al.
2001), NAD(P)H concentration (Riefler and Smets 2002;
van Beelen and Burris 1995; Zenno et al. 1996a,b, 1998),
and exogenous electron donor availability (Adrian et al.
2003; Lewis et al. 1996; Park et al. 2002a,b) have all been
reported to impact the rate and extent of TNT transforma-
tion, while toxicity after TNT exposure (Homma-Takeda
et al. 2002; Kurinenko et al. 2003; Oh et al. 2003; Riefler
and Smets 2002) has been noted, these observations have
so far not been captured in a comprehensive kinetic model.
On the other hand, cometabolic transformation of other
organic chemicals has received substantial quantitative bio-
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kinetic treatment (Criddle 1993), providing a rich resource
of models.

The goal of this study was, therefore, to initiate devel-
opment of a kinetic model to describe reductive TNT
transformation by whole cell, and calibrate it in resting
cells assays with an Escherichia coli-type strain.

Materials and methods

Chemicals TNT was purchased from Chemservice (West
Chester, PA.). Analytical standards of TNT, 2-hydroxyl-
amino-4,6-dinitrotoluene (2HA46DNT), 4-hydroxylamino-
2,6-dinitrotoluene (4HA26DNT), 2-amino-4,6-dinitrotoluene
(2A46DNT), and 4-amino-2,6-dinitrotoluene (4A26DNT)
were obtained from AccuStandard, Inc. (New Haven, CT).

Microorganism, media, and culture conditions For inocu-
lum, E. coli JM 109 (pGEM4z) was cultured in Luria–
Bertani (LB) broth overnight at 37°C and aerated via
agitation at 150 rpm. Cells were regrown under the same
condition at an inoculum/medium ratio of 1:15 (v/v).

Transformation of TNT Anaerobic TNT transformation
assays were performed in an anaerobic chamber filled with
anaerobic gas (N2 85%; H2 5%; CO2%) or pure N2 gas.
Aerobically pregrown E. coli cells were harvested in the
exponential growth phase by centrifugation at 8,110 g and
4°C for 10 min at a culture OD600 of 1.0. The cell pellets
were washed twice with sodium phosphate buffer (PBS,
100 mM, pH 6.5) and resuspended in PBS by adjusting the
OD600 to the required value. The TNT transformation assay
was initiated by adding a small amount of TNT stock
solution (100 mM in acetonitrile) to the culture at 30°C and
immediate mixing by vortexing. Control experiments were
performed by adding TNT to acid-killed cell suspensions
(HCl, 1 N). At a defined time after adding TNT, 1-ml
aliquots were removed, mixed with 50 μl of 1 N HCl (to
stop microbial activity) and 5 μl of 100 mM ascorbate (to
minimize autooxidation). Cell pellets were removed by
spinning at 11,122 g for 5 min. The supernatant was subject
to HPLC analysis to detect TNT and transformation prod-
ucts. Details on the analytical techniques have been pre-
viously reported (Yin et al. 2004).

Product toxicity measurement To quantify the relationship
between the degree of cell inactivation and the amount of
TNT transformed, experiments were performed to assess
cell activity after 1 cycle of TNT reduction and product
removal. In the first cycle, different concentrations of TNT
(Ci=0, 30, 140, and 430 μM) were added to 300 μg/ml of
cells (OD600=1.0) in the presence of 20 mM glycerol at
30°C. After all the TNT had disappeared in all reactions
(24 h), the cells were harvested by centrifuging at 8,110 g
and 4°C for 10 min. The cell pellets were washed once with
sodium phosphate buffer (PBS, 100 mM, pH 6.5) and re-
suspended in PBS by adjusting the OD600 to 1.0. A second
cycle of activity was initiated with the recovered cells by
adding 400 μM of TNT in the presence of 20 mM glycerol

at 30°C. TNT depletion was measured, and initial reaction
rates were determined based on zero-order kinetics of TNT
consumption or HADNT formation. By comparing the
residual activities in the second cycle, the degree of cellular
inactivation was calculated. The amount of cellular inac-
tivation was expressed as a decrease in the active biomass
protein �X ¼ Xi 1� vi

vi;0

� �
, where Xi is the initial cellular

protein concentration (in mg/l), while vi,0 and vi are the
initial TNT removal or HADNT formation rates (in μM/
min) during the second cycle, without or with previous
exposure and transformation of a specified amount of TNT,
respectively.

Kinetic model development

Reductive TNT transformation is an enzymatic reaction
since cell-inactivated controls did not display any TNT
depletion (Yin et al. 2004). Because oxygen may interact in
a complex fashion with reductive TNT transformation
(e.g., it may be a competitive substrate for a TNT reductase
which belongs to the respiratory chain, or it may be a
physiological sink for reducing power), all the experiments
were performed in an anaerobic chamber to avoid oxygen
interference. The kinetic model, hence, does not consider
oxygen as an interfering substance.

The model considers TNT as the major substrate which
is reduced. Intracellular reducing power (RH) is concomi-
tantly oxidized (to R). TNT transformation intermediates
are considered to inactivate enzymes (Honeycutt et al.
1996), while TNT itself can display self-inhibition (Park
et al. 2002a,b). As a result, the basic Michaelis–Menten
(MM) kinetic expression was modified to depict TNT re-
duction. The basic Michaelis–Menten equation is:

d TNT½ �
Xdt

¼ �km
TNT½ �

Ks þ TNT½ �
� �

; (1)
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Fig. 1 Product toxicity measured by comparing the initial transfor-
mation rates of the same cell concentrations preexposed to different
concentrations of TNT (Ci=0, 30, 140, and 430 μM). Two exper-
imental transformation rates are shown: depletion rates of TNT (○)
and formation rates of HADNT (●)
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where km is themaximum rate coefficient (inμmol/mg/min)
and Ks is the half-saturation coefficient (in μM) for TNT.
[TNT] is the molar TNT concentration (μM), and X is the
activecell concentration (measuredascellularprotein,mg/l).

Intracellular reducing power (RH) limitation was mod-
eled by inclusion of a second term in the Michaelis–Menten

expression, and a stoichiometric link between reducing
power consumption and TNT transformation (Segel 1993):

d TNT½ �
dt

¼ �km
TNT½ �

Ks þ TNT½ �
� �

RH½ �
KN þ RH½ �

� �
X ; (2)

� ¼ d RH½ �
d TNT½ �; (3)
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Fig. 2 Contour plots of the
parameter estimation response
surface for the Michaelis–
Menten model incorporating
product toxicity and substrate
inhibition by fixing any two of
the parameters (km, Ks, Tc, and
Ki) while varying the other two.
Best-fit parameter values:
km=0.05 μmol/mg/min,
Ks=126.27 μM, Tc=2.84 μmol/mg
cell protein, Ki=47.44 μM
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where [RH] is an aggregate measure of intracellular re-
ducing power (μM), KN is the half-saturation coefficient (in
μM) for RH, and α is a stoichiometric coefficient (μM
RH/μM TNT) indicating the molar amount of reducing
power consumed per mole of TNT transformed.

Substrate inhibition was modeled via the Haldane modi-
fication of the Michaelis–Menten expression:

d TNT½ �
dt

¼ �km
TNT½ �

Ks þ TNT½ � þ TNT½ �2
Ki

X ; (4)

where Ki is the substrate inhibition coefficient (in μM) for
TNT (Park et al. 2002a,b).

Cell inactivation was described with a linear product
toxicity expression:

dX

dt
¼ 1

Tc

d TNT½ �
dt

; (5)

where Tc is the cell transformation capacity (μmol TNT/mg
cellular protein), dX is the amount of cell activity reduced

(in mg/l) and d[TNT] is the amount of TNT transformed (in
μM) (Alvarez-Cohen and McCarty 1991).

The preceding nonlinear ordinary differential equations
were solved by a fourth-order Runge–Kutta approximation
in an MS office Excel spreadsheet. Parameter estimation
was performed by minimization of the sum of squared
differences between measured and model data points using
both Excel VBA macro programming and Solver optimi-
zation routine. The Newton gradient method with forward
differences was used, and the parameter estimation rou-
tine was started from several different points to ensure that
global minima were obtained. When several reduction pro-
files were fit simultaneously, residuals of individual profiles
were weighted by the corresponding initial TNT concen-
tration to ensure similar contributions of all profiles to
parameter estimation. F-tests were performed to evaluate
whether significant model improvement was attained by
inclusion of additional model parameters (Beck and Arnold
1977).

Results

Initial experiments revealed that TNT depletion profiles
could not be described by simple Michaelis–Menten (MM)
kinetics. For example, rates seemed to decrease with re-
action progress faster than predicted, while—especially at
higher TNT concentrations and lower cellular protein con-
centrations—incomplete TNT removal was documented.

Three processes were examined as the cause of this non-
Michaelis–Menten behavior: reducing power limitation,
product toxicity, and substrate inhibition. Our previous re-
sults revealed that resting cell transformation of TNT could
be significantly enhanced by provision of an external elec-
tron donor, probably because it resupplements the internal
reducing power, RH, consumed during TNT transforma-
tion (Yin et al. 2004). Hence, in subsequent experiments,
we either provided an excess of reducing power (in form of
glycerol), or explicitly considered RH as a limiting factor.

Product toxicity and substrate inhibition

Product toxicity was evaluated by quantifying residual TNT
transformation rates after an initial round of TNT trans-
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Fig. 3 Best fits of TNT reduc-
tion profiles by E. coli in the
presence of excess glycerol em-
ploying a Michaelis–Menten
model incorporating product
toxicity and substrate inhibition.
a Experimental and best-fit de-
pletion profiles. b Experimental
vs best-fit concentrations

Table 1 Best-fit parameters for Michaelis–Menten-type models and
results of F-test to evaluate significance of additional parameter
inclusion (experimental data are presented in Fig. 3a)

Model
parameter
and F-test

Michaelis–
Menten with
product toxicity
and substrate
inhibition

Michaelis–
Menten
with
product
toxicity

Michaelis–
Menten
with
substrate
inhibition

Michaelis–
Menten

km (μmol/
mg/min)

0.05 0.01 0.09 0.01

Ks (μM) 126.27 0.62 314.14 0.65
Tc (μmol
TNT/mg
cell
protein)

2.84 1.96 – –

Ki (μM) 47.44 – 21.89 –
WSSD 21.78 97.73 27.44 122.74
F value 16.12 218.85 16.09
F0.05 7.01 7.01 7.01

329



formation in the presence of excess glycerol (20 mM).
Comparing the initial TNT transformation rates of cells
preexposed to different concentrations of TNT (Ci=0, 30,
140, and 430 μM) yielded product toxicity, measured as
transformation capacity, Tc, of 6.9 μmol TNT/mg total cel-
lular protein. A very similar Tc value (5.2 μmol TNT/mg
cellular protein) was measured when the decrease in
HADNT formation rates after TNT exposure was consid-
ered (Fig. 1).

A biokinetic model incorporating product toxicity and
substrate inhibition [Eqs. (4 and 5)] was then considered to
describe TNT depletion profiles with excess glycerol, when
intracellular reduction power (RH) is a nonlimiting factor.

Kinetic parameter estimation

Parameters were estimated byminimization of the weighted
sum of squared differences (WSSD) between measured and
model data points (12 profiles, 42 data points). Constraining
all parameters to be positive, the optimization routine was
started from several different starting points. All runs con-
verged to unique solutions (even when examined parameter
ranges were increased multifold, e.g., Tc from 0–50 μM
TNT/mg cellular protein), supporting that a global mini-
mum was obtained. Contour plots of response surface near
the global minimum are presented by fixing any pair of
parameters while varying all others (Fig. 2). Best-fit pa-
rameter values clearly altered with the chosen model form,
but the inclusion of additional parameters, Tc and Ki, were
statistically justified based on F-tests (Table 1). Linear
regression of the fitted versus experimental TNT profiles for

all data sets indicated an excellent model fit across the ex-
perimental data sets (Fig. 3).

Parameter identifiability

Sensitivity analyses were performed to test the robustness
of the parameter estimation routine as a function of initial
substrate and cellular protein concentrations. Because TNT
concentration was the measured response in this study, the
following sensitivity equationswere analyzed: dS/dkm=f1(t),
dS/dKs=f2(t), dS/dTc=f3(t), dS/dKi=f4(t), where t is the
contact time. The first derivative of S versus t with respect
to km, Ks, Tc, and Ki were determined by a numerical
algorithm employing a fourth-order Runge–Kutta integra-
tion method. The resulting sensitivity plots were appro-
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Fig. 4 Sensitivity plots for km,
Ks, Tc, and Ki in a Michaelis–
Menten model incorporating
product toxicity and substrate
inhibition at three initial TNT
concentrations. Assumed
parameter values: km=0.05
μmol/mg/min, Ks=126.27 μM,
Tc=2.84 μmol/mol,
Ki=47.44 μM

Table 2 Results of Monte Carlo simulations to evaluate the
identifiability of parameters as affected by experimental measure-
ment error

Parameter km Ks Tc KI

True value 0.050 126.273 2.840 47.436
S0=400 μM
Mean 0.050 126.036 2.862 47.304
Standard deviation 0.004 2.715 0.339 3.505
Coefficient of variance 0.077 0.022 0.118 0.074
S0=50 μM
Mean 0.050 126.204 2.906 47.287
Standard deviation 0.001 0.527 1.138 2.890
Coefficient of variance 0.022 0.004 0.392 0.061
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priately scaled to determine the degree of superimposition
on one another.

The sensitivity profiles for the four parameters (km, Ks,
Tc, and Ki) were well separated at low initial TNT con-
centration (56 μM), while the separation became poorer
at higher initial TNT concentrations (257 and 440 μM)
(Fig. 4). There was some correlation between km and Ki at
TNT concentration of 440 μM, but the two sensitivity
curves were still separable suggesting that the parameters
were identifiable under this condition. Quantitatively, km
has the highest impact on TNT depletion in all plots (by at
least 2 orders of magnitude). In summary, the sensitivity
analysis suggests that unique estimates of all four param-
eters (km, Ks, Tc, and Ki) can be obtained from batch ex-
periments within the range of initial TNT concentrations
that were experimentally employed.

Monte Carlo simulations were subsequently performed
to determine the robustness and accuracy of the parameter
estimation routine considering typical measurement error.
The standardized difference between the measured TNT
profile and the best-fit profile was set equal to the stan-
dardized error for each measurement. These standardized
errors followed a normal distribution (normality test:
p=0.751, mean −0.037, standard deviation 0.102). Uncor-
related, random, normally distributed errors with a zero
mean and calculated standard deviation were subsequently
added to the simulated TNT profiles created with the
Michaelis–Menten plus toxicity and inhibition model
(MM+Tc+Ki). One hundred realizations of two ensembles,
each containing random measurement error, were created

and biokinetic parameters (km, Ks, Tc, and Ki) were esti-
mated from each of those realizations. One ensemble was
based on estimated parameters for TNT profiles at an initial
concentration of 50 μM, and the other ensemble was based
on an initial concentration of 400 μM. Monte Carlo sim-
ulations indicated that the parameter estimation routine
retrieved best-fit parameters very close to the true values
(Table 2), with acceptable coefficients of variance for the
four parameters (km, Ks, Tc, and Ki) (2.2–7.7%) with the
lowest precision for Tc (11.8–39.2%). Hence, typical
measurement errors will not significantly deteriorate pa-
rameter estimation at any TNT concentration; although the
estimated Tc has much more variability at a low TNT
concentration (50 μM). Despite its relatively high variabil-
ity, the 95% confidence interval for Tc lies in the range of
2.42–3.39 (data not shown), which is still close to the true
estimated value 2.84 μM. Overall, the results indicate that,
on average, the parameter estimation method can obtain
accurate parameter estimates, although replicate profilesmay
be necessary to overcome variability in the measurements.

Reducing power limitation

With product toxicity and substrate inhibition identified
and quantified, TNT transformation by E. coli resting cells
was examined without excess glycerol to evaluate the ef-
fect of reducing power limitation. Experiments were con-
ducted at an initial TNT concentration ranging from 0 to
300μMand constant cellular protein concentration (300mg
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protein/l). The modified Michaelis–Menten model, incor-
porating product toxicity and substrate inhibition, yielded
poor fits to the TNT depletion profiles, suggesting the need
to explicitly consider reducing power. As a result, Eqs. (2
and 3) were applied to incorporate the limitation of reducing
power. Retaining the four parameters, km, Ks, Tc, and Ki, at
the same values as identificed in the excess glycerol case,
KN and α are the only parameters that required estimation.
The parameter α measures the molar ratio of RH oxidized
to TNT reduced (d[RH]/d[TNT]). In our observation, TNT
was reduced to HADNTs in a first step, theoretically ac-
companied with two electrons transfer per TNT molecule
transformed (Yin et al. 2004). However, a molar ratio of
1.66 was chosen, because our earlier experimental work
revealed an incomplete molar recovery of HADNT isomers
from TNT (Riefler and Smets 2002). There is no direct and
clear way to measure the intracellular reducing power con-
centration (RH) as it is unknown, to date, what fraction of
the total intracellular reducing power equivalents contrib-
utes electrons to TNT reduction. As a result, RH0 was a
parameter to be estimated. Starting from different initial
estimates of RH0 and KN, a global solution converged on

best-fit estimates for RH0 and KN of 302 and 1,825 μM,
respectively (three profiles, 24 data points) (Fig. 5). Linear
regression of fitted versus experimental TNT concentra-
tions indicated a good model fit (Fig. 6). These results
demonstrate the necessity of incorporating intracellular re-
ducing power limitation to depict TNT transformation ki-
netics in resting cells of E. coli.

Discussion

TNTreductive transformations have been extensively docu-
mented in various microbes and plants (Esteve-Núñez et al.
2001; Spain 1995). For example, with the E. coli strain
used in this report, TNT is sequentially transformed to
4HA26DNT and 2HA46DNT (with 4HA26DNT as the
major isomer), followed by formation of 24D(HA)6NT
and ADNT isomers (4A26DNT, with sporadic detection of
2A46DNT), all of which—except 24D(HA)6NT—were de-
tected in the presence of residual TNT, indicating con-
comitant reduction, with 24DA6NT as the most reduced
transformation product detected (Yin et al. 2004). How-
ever, reports on comprehensive modeling of TNT reduc-
tion have been sparse. TNT transformation has only been
described by pseudo-first, second-order, or simple Michaelis–
Menten kinetics thus far (Wang et al. 2003; Watrous et al.
2003). A detailed Michaelis–Menten-based model has
been reported with respect to the reduction of TNT by a
pure enzyme, NAD(P)H:flavin mononucleotide oxidore-
ductase (Riefler and Smets 2002). In this study, whole-cell
transformation of TNT by E. coli was thoroughly investi-
gated and modeled with a modified Michaelis–Menten
kinetic model. Half-saturation coefficient (Ks) in whole
cells was estimated at 126.27 μM, whereas for the pure
enzyme NAD(P)H:flavin mononucleotide oxidoreductase,
this value was 187 μM. The similar affinity expressed in
these Ks values suggests that mass transfer across the cell
membrane does not severely limit the reaction.

Nitroreductases NfsA and/or NfsB have been implicated
in catalyzing TNT reduction by E. coli (Yin et al. 2004).
Reported specific nitroreductase activities were compared
to our whole-cell observations by using a typical nitro-
reductase yield (7.2‰ of total cellular protein; Zenno et al.
1996a,b) (Table 3). Our estimated TNT reductase activity
of 50 nmol/min/mg of total cellular protein falls within the
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Table 3 Literature reported nitroreductase activities and extrapo-
lated whole-cell unit based activities

Enzymes/whole
cells

Electron acceptor
(s)

Reductase activity
(nmol/min/mg of protein)

Pure
enzyme

Whole cells

NAD(P)H:flavin
mononucleotide
oxidoreductase
(Riefler and
Smets 2002)

TNT 319,000 2,300a

NfsA (Zenno et al.
1996b)

4-Nitrotoluene 1,000 7.2a

NfsB (Zenno
et al. 1996a)

4-Nitrotoluene 400 2.88a

E. coli whole
cells (this study)

TNT NA 50

aExtrapolated assuming that the specific enzyme constitutes 7.2‰ of
total cellular protein
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range of the above known nitroreductase activities (between
2.88 and 2,300 nmol min/mg of total cellular protein).
Compared with the activities of NfsA and NfsB toward
4-nitrotoluene (Zenno et al. 1996a,b), our estimate was
about eightfold higher, which would be consistent with the
thermodynamically favored reduction of TNT per its one-
electron reduction potential (Riefler and Smets 2002).

Product toxicity was estimated at 5.2 μmol TNT/mg of
total cellular protein, equivalent to ∼700 μmol/mg of NfsA
(Zenno et al. 1996a,b) assuming the same protein fraction
as above, and on the same scale as the measured toxicity
of 398 μmol TNT/mg of enzyme for the NAD(P)H:FMN
oxidoreductase (Riefler and Smets 2002). Further, our
analysis clearly supported the need to include a product
toxicity term to permit adequate simulation of the TNT de-
pletion profiles (Table 1).

Resting cells of E. coli consume their own reducing
power for TNT transformation through cometabolism, and
we provided a simple approach to account for changes in
the intracellular reducing power in the model. However, as
the relevant initial intracellular reducing power (RH0), to
date, can not be analytically defined and tracked, it was
treated as a parameter and subject to best parameter estima-
tion. The best-fit RH0 value of 302 μM was, satisfactorily,
consistent with experimentally measured intracellular con-
centrations of NADH under aerobic conditions (de Graef
et al. 1999; Riefler and Smets 2002), while the half-sat-
uration coefficient KN (1,825 μM)was in a range consistent
with reports for examined pure enzymes (Riefler and Smets
2002). The depletion profiles of intracellular reducing
power (RH) were based on the assumed stoichiometric lin-
ear relationship with TNT consumption (Riefler and Smets
2002). While a reasonable stoichiometric coefficient was
obtained from reports on a similar enzyme, experimental
confirmation of this parameter value and its constancy are
necessary (Riefler and Smets 2002). Clearly, a more rigor-
ous assessment of the physical correctness of the proposed
model and parameters will be contingent on a direct iden-
tification and quantification of E. coli’s intracellular reduc-
ing power that drives TNT reduction and the experimental
confirmation of this stoichiometric relationship.

This study presents the first comprehensive model of
whole-cell level TNT reductive transformation in Escher-
ichia coli, and provides new insight into the mechanism
of microbial TNT reduction. Here we demonstrate that
TNT bioreduction profiles can be described by Michaelis–
Menten kinetics incorporating three factors: product toxic-
ity, substrate inhibition, and reducing power limitation. The
presented kinetic model successfully describes our exper-
imental data at various initial TNT concentrations under
reducing power excess or limited scenarios; and can form
the basis for further examinations in TNT bioreduction
(e.g., examination of involved enzymes, identification of
internal reducing power pools).
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