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Abstract

Prevention of the initiation of biofilm formation is the most important step for combating biofilm-associated pathogens, as
the ability of pathogens to resist antibiotics is enhanced 10 to 1000 times once biofilms are formed. Genes essential to
bacterial growth in the planktonic state are potential targets to treat biofilm-associated pathogens. However, the biofilm
formation capability of strains with mutations in these essential genes must be evaluated, since the pathogen might form a
biofilm before it is eliminated. In order to address this issue, this work proposes a systems-level approach to quantifying the
biofilm formation capability of mutants to determine target genes that are essential for bacterial metabolism in the
planktonic state but do not induce biofilm formation in their mutants. The changes of fluxes through the reactions
associated with the genes positively related to biofilm formation are used as soft sensors in the flux balance analysis to
quantify the trend of biofilm formation upon the mutation of an essential gene. The essential genes whose mutants are
predicted not to induce biofilm formation are regarded as gene targets. The proposed approach was applied to identify
target genes to treat Pseudomonas aeruginosa infections. It is interesting to find that most essential gene mutants exhibit
high potential to induce the biofilm formation while most non-essential gene mutants do not. Critically, we identified four
essential genes, lysC, cysH, adk, and galU, that constitute gene targets to treat P. aeruginosa. They have been suggested by
existing experimental data as potential drug targets for their crucial role in the survival or virulence of P. aeruginosa. It is also
interesting to find that P. aeruginosa tends to survive the essential-gene mutation treatment by mainly enhancing fluxes
through 8 metabolic reactions that regulate acetate metabolism, arginine metabolism, and glutamate metabolism.
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Introduction

Biofilms have been frequently associated with human diseases

such as osteomyelitis [1], chronic wound infections [2,3] and cystic

fibrosis [4], as they facilitate the survival of pathogens in hostile

environments. It is reported that nearly 65% of all nosocomial

infections in the USA are associated with biofilms [5]. When

exposed to stress, such as that imposed by antibiotic treatments or

limited nutrients, pathogens adhere to each other to form biofilms

for the purpose of survival [6]. The development of biofilms

generally comprises the following four stages, i.e., the initial

attachment of planktonic pathogens to a surface, the accumulation

of biofilms through the production of extracellular polysaccharide

substance (EPS) that interconnects and transiently immobilizes

biofilm cells, the maturation of biofilm architecture, and the

dispersal of single cells from the biofilm [7]. The first few stages

play a key role in treating the biofilm-associated pathogens, as the

ability of pathogens to resist antibiotics is significantly enhanced

once they form biofilms [5,7]. Therefore, significant effort in the

biofilm research community has been devoted to the investigation

of bacterial metabolism and signaling which are involved in the

transition from planktonic growth to biofilm growth [8,9].

Elucidating the mechanisms of biofilm formation is far from

trivial: hundreds of highly interacted molecules such as metabo-

lites, metabolic enzymes, and signaling proteins are involved in

regulating this process. Most current research is focused on the

experimental investigation of the impact of individual molecules,

such as regulators, on biofilm formation [10,11]. This is

insufficient for characterizing the biofilm formation process, as a

systems-level characterization of interactions between molecules

involved in biofilm formation is required to fully understand

biofilm formation mechanisms and thus manipulate the metabo-

lism of microorganisms in biofilms. Genome-scale metabolic

modeling has been commonly used for systemically studying

microorganism metabolism, as evidenced by its wide application in

identifying genes that are essential for the growth of Escherichia coli

[12], Staphylococcus aureus [13], Mycobacterium tuberculosis [14],

Acinetobacter baumannii [15], and Pseudomonas aeruginosa [16]. A

recent study by Thiele and her coworkers [17] shows the first

systems biology approach to identifying candidate drug targets for

treating P. aeruginosa in biofilms. This approach mainly applies

single/double gene inhibition simulations to determine the growth

of P. aeruginosa in specific microenvironments that imitate

microbial communities associated with biofilm formation. How-
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ever, certain issues have not been addressed in this approach,

including the quantification of the trend for mutants to form

biofilms, and the identification of metabolic reactions that facilitate

biofilm formation in mutants. This forms the motivation of this

work, that is, to consider the trend of biofilm formation for

mutants in the identification of drug-target genes.

Here, we propose an approach to identifying drug targets

against a biofilm-forming pathogen, by identifying genes that

satisfy two requirements: 1) these genes are crucial for the growth

of the pathogen in the planktonic state, that is, the mutation of any

of these genes can eliminate the planktonic pathogen; and 2) the

inhibition of the function of these genes does not induce biofilm

formation.

In particular, we first use the essential planktonic-growth genes

presented in Oberhardt et al., 2008 [16] as the initial set of genes

satisfying the first requirement, and further, from the initial set,

identify genes also satisfying the second requirement. We perform

the search by pinpointing a set of biofilm associated reactions from

the genes that are reported to be positively related to P. aeruginosa

biofilm formation in Müsken et al., 2010 [18], and using the flux

changes through these reactions as soft-sensors to quantify the

impact of the mutation of each gene from the initial set on biofilm

formation. The rationale for the use of biofilm-associated reactions

is that a large enhancement of fluxes (i.e., activity levels) through

these reactions reflects a large potential for a mutant to form

biofilms. Specifically, to obtain the flux changes through biofilm-

associated reactions, we simulate the metabolism of a gene mutant

via flux balance analysis (FBA) [19], and sample the biofilm-

associated reaction fluxes via the artificially-center-hit-and-run

method (ACHR), an efficient sampling approach for a linearly

constrained space [20]. In addition, metabolic reactions whose

fluxes significantly increase in most mutants can be determined

and regarded as reactions that facilitate biofilm formation. P.

aeruginosa is chosen as the reference pathogen in this work, because

P. aeruginosa is one of the leading causes of nosocomial infections in

hospitalized patients and P. aeruginosa is resistant to a wide array of

antibiotics by forming biofilms during chronic infections [21,22].

Results

An illustrative example
The key innovation of the proposed approach is to take the

biofilm formation of a single mutant into account when identifying

gene targets to treat biofilm-associated pathogens. While the detail

of the proposed approach is given in the Material and Methods

section, an example is shown in Figure 1 to illustrate the steps for

the identification of drug targets that impair the growth of P.

aeruginosa without inducing biofilm formation. The genes positively

associated with biofilm formation (obtained from Müsken et al.,

2010 [18] for P. aeruginosa in LB medium) are first overlaid with the

P. aeruginosa metabolic network to identify reactions associated with

biofilm formation (Figure 1, Step 1). The metabolic model

presented in Oberhardt et al., 2008 [16], which contains 1056

genes and 883 metabolic reactions, is used in this work, as it is the

most comprehensive metabolic model for P. aeruginosa and it has

been used to correctly predict catabolism of various substrates such

as amino acids and common sugars via flux balance analysis.

Further, we quantitatively evaluated the impact of the mutation of

each essential planktonic-growth gene (obtained from Oberhardt

et al., 2008 [16] for P. aeruginosa in LB medium, including the

PA1756 gene) on biofilm associated reactions, by calculating

relative activity changes of these reactions via Steps 2 and 3. The

obtained relative activity change profile quantitatively suggests the

capability of a mutant to form biofilms, that is, large values for the

changes imply a potential induction of the mutant’s biofilm

formation. In Step 4, the similarity in the shape and magnitude of

relative activity profiles is used to categorize the essential

planktonic-growth genes [16] into different clusters. The clusters

of essential planktonic-growth genes whose mutants have low

potential to induce biofilm formation are identified as drug-target

genes (such as PA1756), because the mutation of these genes can

eliminate planktonic pathogens. Metabolic reactions whose

activity levels significantly increase in most single mutants are

identified in Step 5. These reactions illustrate how P. aeruginosa

adjusts its metabolism to form biofilms upon the mutation of genes

essential for planktonic growth

Identification of genes and reactions positively
associated with P. aeruginosa biofilm formation

A set of biofilm-associated metabolic reactions are obtained via

Step 1 in Figure 1. The experimental data of genetic determinants

of P. aeruginosa biofilm have been presented in Müsken et al., 2010

[18]. 394 genes are reported to be positively associated with

biofilm formation, and 64 of them are involved in the metabolic

network. None of these 64 genes are essential for bacterial growth

in the planktonic state. Flux balance analysis showed that

inhibition of 37 of these 64 genes doesn’t affect bacterial growth

rate. These genes are thus not directly involved in the bacterial

biomass synthesis. Fluxes of reactions associated with these 37

genes are the ideal virtual sensors that monitor the trend of P.

aeruginosa to form biofilms, as these genes are only associated with

biofilm formation. The 39 reactions associated with these 37 genes

are considered as biofilm-associated reactions (see Table 1).

It can be seen from Table 1 that the biofilm-associated reactions

are mainly involved in the consumption of nitrite, the regulation of

acetate, tricarboxylic acid (TCA) circle, the generation of carbon

dioxide and ammonia, iron metabolism, the regulation of

hydrogen peroxide, arginine metabolism, the production of

glutamate, pyrimidine metabolism, and oxidative phosphorylation.

While these reactions were identified by overlaying the 37 genes

that are reported to be associated with biofilm formation in

Müsken et al., 2010 [18] onto the metabolic network of P.

aeruginosa, their important role in biofilm formation is further

confirmed by the following independent evidence:

N It has been shown that accumulation of nitrite is required to

inhibit biofilm formation in staphylococcal strains [23]. The

consumption of nitrite thus facilitates biofilm formation.

N Acetate is found to be engaged in the switch from a physiology

program that permits a rapid growth in the presence of

abundant nutrients to a program related to biofilm formation

that can enhance the survival of E. coli in the absence of

nutrients [24].

N Certain genes in TCA cycle are up-regulated in the

staphylococcal biofilm [25].

N The concentration of carbon dioxide can be used as an

indicator of biofilm formation [26], and carbon dioxide and

ammonia influence the pH value in the cytosol, which in turn

affect biofilm formation [18].

N The important role of iron in the E. coli biofilm formation has

been reported by several previous studies [27,28,29].

N Hydrogen peroxide has been recognized to trigger the

initiation of biofilm in Streptococcus gordonii via the release of

the extracellular DNA [30].

N The arginine fermentation regulated by the arginine deami-

nase is the major metabolic process for the generation of ATP

in P. aeruginosa in the anaerobic condition [31].

Model-Based Study: P.aeruginosa Biofilm Formation
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N Glutamate synthesis is reported to be positively correlated with

biofilm formation of Mycobacterium bovis [32].

N Pyrimidine metabolism is reported to participate in the

modulation of the E. coli biofilm formation [33]. It has been

experimentally verified that pyrimidine uracil influences

quorum sensing and biofilm formation in P. aeruginosa [34].

N Oxidative phosphorylation is coupled with the ATP produc-

tion for pathogens in biofilms. It has been demonstrated that

enzymes that participate in the oxidative phosphorylation are

up-regulated in Bordetella pertussis biofilms [35].

Investigation of biofilm formation capability for single-
mutants

Given the above biofilm-associated reactions, we obtained a

relative activity change profile of these reactions for each single

mutant of the 136 essential planktonic-growth genes obtained from

Oberhardt et al., 2008 [16] (via Steps 2 and 3), and, subsequently,

based upon the similarity in relative activity change profiles for

different single mutants, went through Step 4 to hierarchically

categorize the essential planktonic-growth genes into six different

clusters (as shown in Figure 2). Clusters 1 and 2 are located in one

branch, while the other four clusters are associated with the other

branch. The hierarchical clustering algorithm allows us to further

separate genes in each cluster into different groups according to

the similarity in their relative activity change profiles. The genes

associated with each group shown in Figure 2 are listed in Table 2.

The profiles of relative activity change for the mutants of the

representative groups for different clusters are shown in Figure 3.

Figure 3 (A) and (B) show the profiles for the mutants of the

PA0945 (from Group 1, Cluster 1) and PA5038 genes (from Group

25, Cluster 1), respectively. The profiles of these two mutants are

used to represent the whole spectrum of Cluster 1, because,

although they are from the two groups (Groups 1 and 25) with the

lowest similarity in the cluster, their profiles of relative activity

change in Figure 3 (A) and (B) are similar, suggesting that the

single mutations of genes in Cluster 1 have similar impacts on

biofilm-associated reactions and thus potentially on biofilm

formation. Figure 3 (C) through (G) show the relative activity

change profiles of representative groups from Clusters 2 through 6,

respectively. Since there is only one group (actually one gene per

group) associated with each of these clusters, these groups are

regarded as the representatives of the corresponding clusters (as

shown in Figure 2).

Single mutants of genes from different clusters have different

potentials to induce biofilm formation. As shown in Figure 3 (A)

and (B), the activity levels of certain biofilm-associated reactions

have significant increases upon the mutation of a gene from

Cluster 1, suggesting that the gene mutants from Cluster 1 might

form biofilms and in turn prevent the elimination of P. aeruginosa.

The comparison of Figure 3 (C) to Figure 3 (A) and (B) shows that

mutants from Cluster 2 might still form biofilms but to a lesser

extent. In particular, the mutant from Cluster 2 (PA4031) and

those from Cluster 1 (PA0945 and PA5038) have similar relative

activity changes in the biofilm-associated reactions Rxn#1

through Rxn#32, but the mutant from Cluster 2 has much

smaller changes in Rxn#33 through Rxn#39 than those from

Cluster 1. Interestingly, as shown in Table 2, there are totally 132

essential genes associated with Cluster 1 and Cluster 2, while only

the remaining four are from Clusters 3 through 6, suggesting that

the mutation of most essential planktonic-growth genes might

induce the formation of biofilms. Therefore, not every essential

planktonic-growth gene is a good target to treat biofilm-associated

pathogens.

The mutation of any gene from Clusters 3 through 6 might not

induce biofilm formation, as approximately 96% of the biofilm-

associated reactions for these mutants are of small relative activity

changes (e.g. most less than 0.5). In addition, the relative activity

changes of certain biofilm-associated reactions are reversed and

have negative values. Even though the amplitudes of these

negative relative fold changes are minor (e.g., most less than

0.5), the metabolic activities are not distributed in the direction for

promoting biofilm formation for the mutants from Clusters 3

through 6. Therefore, the four genes in these clusters, i.e., PA0904

(lysC), PA1756 (cysH), PA3686 (adk), and PA2023(galU), are

regarded potential gene targets to treat P. aeruginosa, because they

are essential to planktonic P. aeruginosa and their mutants might not

induce biofilm formation.

Validation of the predicted results with existing
experimental data

Experimental data were collected from the literature to validate

the aforementioned prediction results, which shows that the

mutants from Clusters 1 and 2 might induce biofilm formation

while the mutants from Clusters 3 through 6 might not. The

essential genes contained in Clusters 1 and 2 are mainly involved

in vitamin and cofactor synthesis, amino acid catabolism, cell wall

synthesis, central metabolism, the membrane transport system,

nucleotide synthesis, nucleotide salvage, and lipid synthesis. The

involvement of these genes in the aforementioned biological

systems is listed in the Table S1. The mutants of some genes in

Cluster 1 have been reported to form biofilms. For example, the

inhibitor of the enzyme encoded by the glmU gene (Group 4) is

able to enhance the formation of biofilms of P. aeruginosa PAO1

[36]. Another example is given that the pgsA null mutant (Group 4)

of E. coli activates the Rcs signal transduction pathway that is

crucial for E. coli biofilm formation [37]. In addition, the down-

regulation of the following six essential genes, i.e., pyrH (Group 6),

Figure 1. Schematic description of quantifying the biofilm formation capability of single mutants of essential genes for P.
aeruginosa. The genes positively associated with P. aeruginosa biofilm formation are used to determine biofilm-associated reactions in Step 1. The
essential gene m (e.g., PA1756 gene) is used as a reference gene in Steps 2 through 3 to illustrate the proposed approach for quantifying the
potential of a single mutant to form biofilms. Specifically, reactions associated with gene m are partially mutated, and the flux distributions of all
biofilm-associated reactions for both wide-type and mutant strains are quantified in Step 2. The relative change of activity through all biofilm-
associated reactions for the gene m mutant is quantified in Step 3. A large enhancement in the activity of biofilm-associated reactions implies a large
potential for the single mutant to form biofilms. The profiles for four mutants are given as examples in Step 3. Mutant 4 exhibits the lowest potential
to form biofilms. The relative activity change profiles for all single mutants are used to categorize essential genes into different clusters in Step 4.
Mutant 4 is assigned to a different cluster from that for the other three mutants, as its relative activity profile is not similar to those for the other
mutants in both the shape and the magnitude. The essential planktonic-growth genes whose mutants might not induce biofilm formations are
identified from the cluster results and regarded as potential target genes. For example, gene PA1756, which corresponds to mutant 4 in Step 3, is one
potential gene target due to the low enhanced activities through those biofilm-associated reactions in its mutant. The biofilm-associated reactions
whose activity levels are apparently enhanced in most mutants are identified in Step 5. These reactions indicate the underlying mechanisms for P.
aeruginosa biofilm formation.
doi:10.1371/journal.pone.0057050.g001
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Table 1. Biofilm-associated genes and reactions that are identified via the overlay of the genes reported by Müsken, et al., 2010
[18] to be positively associated with biofilm formation onto the metabolic network presented by Oberhardt, et al., 2008 [16].

Reactions Genes
Biological
subsystems

Rxn#1: dGTP + H2O R Deoxyguanosine + Inorganic triphosphate PA1124 (dgt) pyrimidine metabolism

Rxn#2: GTP + H2O R Guanosine + Inorganic triphosphate PA1124 (dgt) pyrimidine metabolism

Rxn#3: H+ + Malonate R Acetate + CO2 PA0208 (mdcA) carbon dioxide
production

Rxn#4: Coenzyme A + 3-Oxoadipyl-CoA R Acetyl-CoA + Succinyl-CoA PA0228 (pcaF) acetate metabolism

Rxn#5: 4-Aminobutanoate + 2-Oxoglutarate R L-Glutamate + Succinic semialdehyde PA0266 (gabT) glutamate production

Rxn#6: 2 S-Adenosyl-L-methionine + Uroporphyrinogen III R 2 S-Adenosyl-L-homocysteine +
H+ + Dihydrosirohydrochlorin

PA0510 (nirE) coenzyme B12 synthesis

Rxn#7: Ferrocytochrome c + 2 H+ + Nitrite R Ferricytochrome c + H2O + Nitric oxide PA0511 (nirJ) nitrite consumption

Rxn#8: Fumarate + H2O « L-Malate PA0854 (fumC2) TCA cycle

Rxn#9: cobalt2[e] R cobalt2[c] PA0913 (mgtE) cobalt transport

Rxn#10: mg2[e] R mg2[c] PA0913 (mgtE) magnesium transport

Rxn#11: 1-Aminopropan-2-ol + Adenosyl-cobyric acid « Adenosyl cobinamide + H2O PA1275 (cobD) coenzyme B12 synthesis

Rxn#12: L-Threonine R 2-Oxobutanoate + Ammonium PA1326 (ilvA2) production of ammonia

Rxn#13: 4-Maleylacetoacetate R 4-Fumarylacetoacetate PA2007 (maiA) acetate metabolism

Rxn#14: Benzoate + 2 H+ + Nicotinamide adenine dinucleotide - reduced + O2 R Cis-1,
2-dihydroxycyclohexa-3,5-diene-1-carboxylate + Nicotinamide adenine dinucleotide

PA2518 (xylX) benzoate degradation

Rxn#15: Isocitrate + Nicotinamide adenine dinucleotide phosphate « 2-Oxoglutarate + CO2 +
Nicotinamide adenine dinucleotide phosphate - reduced

PA2623 (icd) TCA and carbon dioxide
production

Rxn#16: 3 H+ + Nicotinamide adenine dinucleotide - reduced + Ubiquinone-8 R Nicotinamide
adenine dinucleotide + Ubiquinol-8 + 2 H+

PA2642 (nuoG) oxidative
phosphorylation

Rxn#17: ATP + H2O + Phosphonate[e] R ADP + H+ + Phosphate + Phosphonate[c] PA3383 (phnD) phosphate transport

Rxn#18: S-Adenosyl-L-methionine + Butyryl-[acyl-carrier protein] R 5-Methylthioadenosine +
Acyl carrier protein + H+ + N-butyryl-L-homoserine lactone

PA3476 (rhlI) homoserine synthesis

Rxn#19: 2 Ferrocytochrome c + 4 H+ + 0.5 O2 R 2 Ferricytochrome c + H2O + 2 H+ PA4133 (ccoN) iron metabolism

Rxn#20: ATP + H2O + Fe-enterobactin R ADP + Fe-enterobactin + H+ + Phosphate PA4160 (fepD) iron metabolism

Rxn#21: Chorismate R Isochorismate PA4231 (pchA) oxidative
phosphorylation

Rxn#22: 2 Hydrogen peroxide R 2 H2O + O2 PA4236 (katA) hydrogen peroxide
consumption

Rxn#23: Alpha-D-Ribose 5-phosphate + Uracil « H2O + Pseudouridine 59-phosphate PA4544 (rluD) pyrimidine metabolism

Rxn#24: 1.5 O2 + Protoporphyrinogen IX R 3 H2O + Protoporphyrin PA4664 (hemK) coenzyme B12 synthesis

Rxn#25: Alpha-Oxo-benzeneacetic acid « Benzaldehyde + CO2 PA4901 (mdlC) carbon dioxide
production

Rxn#26: Reduced glutathione + Methylglyoxal R (R)-S-Lactoylglutathione PA5111 (gloA3) glutathione metabolism

Rxn#27: N(omega)-(L-Arginino)succinate « L-Arginine + Fumarate PA5263 (argH) arginine metabolism

Rxn#28: ATP + H2O + Phosphate[e] R ADP + H+ + 2 Phosphate[c] PA5368 (pstC) phosphate transport

Rxn#29: Citrate[e] + H+[e] « Citrate[c] + H+[c] PA5476 (citA) TCA cycle

Rxn#30: 5,6-dihydrouracil + H2O « N-Carbamoyl-beta-alanine + H+ PA0441 (dht) pyrimidine metabolism

Rxn#31: Nicotinamide adenine dinucleotide + O-Phospho-4-hydroxy-L-threonine R
2-Amino-3-oxo-4-phosphonooxybutyrate + H+ + Nicotinamide adenine dinucleotide 2 reduced

PA0593 (pdxA) pyridoxine metabolism

Rxn#32: 2-Methyl-4-amino-5-hydroxymethylpyrimidine diphosphate +
4-Methyl-5-(2-phosphoethyl)-thiazole + H+ R Diphosphate + Thiamin monophosphate

PA3976 (thiE) thiamin metabolism

Rxn#33: ATP + Coenzyme A + Succinate « ADP + Phosphate + Succinyl-CoA PA1588 (sucC) TCA cycle

Rxn#34: L-Aspartate + ATP + L-Citrulline R AMP + N(omega)-(L-Arginino)succinate +
H+ + Diphosphate

PA3525 (argG) arginine metabolism

Rxn#35: Acetate + ATP + Coenzyme A R Acetyl-CoA + AMP + Diphosphate PA4733 (acsB) acetate metabolism

Rxn#36: 2 ATP + L-Glutamine + H2O + Bicarbonate R 2 ADP + Carbamoyl phosphate +
L-Glutamate + 2 H+ + Phosphate

PA4758 (carA) arginine metabolism

Rxn#37: 2 H+ + H2O + Urea R CO2 + 2 Ammonium PA4867 (ureB) arginine metabolism,
ammonia production,
carbon dioxide
production

Model-Based Study: P.aeruginosa Biofilm Formation
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tktA (Group 22), tpiA (Group 19), rpiA (Group 24), dapD (Group 4),

and rmlA (Group 4), is reported as the driving force for Streptococcus

biofilm formation [38].

As seen from Figure 3, the activity levels of all the biofilm-

associated reactions are small for the genes from Clusters 3

through 6, i.e., PA0904 (lysC), PA1756 (cysH), PA2023(galU), and

PA3686 (adk). Hence, they are regarded as ideal gene targets to

treat P. aeruginosa infections because the inactivation of any of them

can kill the planktonic pathogen cells but cannot promote the

switch from planktonic growth to biofilm formation. The following

experimental evidence further confirms these four genes are good

targets to treat biofilm-associated P. aeruginosa:

N The enzyme encoded by lysC is aspartate kinase (AK) that

catalyzes the phosphorylation of aspartic acid, the first step in

the biosynthesis of the aspartic amino-acid family, lysine,

threonine, and methionine. Aspartate kinase can also influence

the synthesis of diaminopimelic acid, which is an intermediate

in the lysine biosynthesis and meanwhile a key compound

participating in cell-wall synthesis in most bacteria [39].

Furthermore, it has been found that the mutation of lysC is

unable to form biofilms in Vibrio cholerae [40].

N cysH encodes adenosine 59-phosphosulfate reductase that

catalyzes the first committed step of reductive sulfate

assimilation in P. aeruginosa. This enzyme is required for the

survival and virulence of P. aeruginosa in biofilms [41].

N Gene galU encodes glucose-1-phosphate uridylyltransferase,

which mediates the reversible reaction of glucose-1-phosphate

(G1P) and UTP into UDP-glucose and pyrophosphate. The

function of glucose-1-phosphate uridylyltransferase in micro-

organisms is to synthesize capsular polysaccharide that is

Table 1. Cont.

Reactions Genes
Biological
subsystems

Rxn#38: H2O + Urocanate R 4-Imidazolone-5-propanoate PA5100 (hutU) glutamate metabolism

Rxn#39: ATP + Oxaloacetate R ADP + CO2 + Phosphoenolpyruvate PA5192 (pckA) carbon dioxide
production

doi:10.1371/journal.pone.0057050.t001

Figure 2. Clustering result for essential planktonic-growth genes based upon the ability of their mutants to form biofilms. These
essential genes are separated into 30 groups by the hierarchical clustering program. The genes in each group are listed in Table 2. They are
categorized into six clusters by selecting a threshold marked by the blue color line. The groups marked by red rectangles are regarded as the
representatives of the cluster of genes. Two groups with the lowest similarity in the same cluster are selected as representatives if more than one
group of genes are involved in that cluster.
doi:10.1371/journal.pone.0057050.g002
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essential for the survival and virulence of P. aeruginosa in biofilm

[42].

N The enzyme encoded by adk is adenylate kinase, a ubiquitous

enzyme that contributes to the homeostasis of adenine

nucleotides in eukaryotic and prokaryotic cells. It is interesting

to find that adenylate kinase functions as a P. aeruginosa

virulence factor [43]. In particular, adenylate kinase is secreted

by P. aeruginosa, and it in turn causes the death of human

macrophage cell.

Investigation of metabolic reactions that facilitate biofilm
formation

An interesting finding by inspecting Figure 3 (A) through (C) is

that certain biofilm-associated reactions have significantly in-

creased activity levels (e.g., more than three-fold) upon the single

mutations of all the three representative genes from Cluster 1 and

Cluster 2, i.e., PA0945 (purM), PA5038 (aroB), and PA4031 (ppa).

This implies that, although these metabolic reactions are all

associated with biofilm formation, certain parts of them are more

Table 2. Genes associated with each group shown in Figure 2.

Group ID Cluster
# of genes in
each group Essential planktonic-growth genes

1 1 6 PA0945(purM),PA4693(pssA),PA4855(purD),PA4957(psd), PA5164(rmlC), PA5549(glmS)

2 1 1 PA5161(rmlB)

3 1 1 PA3639(accA)

4 1 99 PA0005(lptA),PA0006(yaeD),PA0280(cysA),PA0281(cysW), PA0282(cysT),PA0283(sbp),PA0342(thyA),PA0350(folA),
PA0363(coaD),PA0430(metF),PA0582(folB),PA0724(coaA), PA0761(nadB),PA1004(nadA),PA1013(purC),PA1162(dapE),
PA1376(aceK),PA1393(cysC),PA1493(cysP),PA1758(pabB), PA1796(folD),PA1806(fabI),PA1959(bacA),PA2165(glgA),
PA2584(pgsA),PA2629(purB),PA2962(tmk),PA2964(pabC), PA2967(fabG),PA2977(murB),PA2979(kdsB),PA2981(lpxK),
PA3088(yfjB),PA3108(purF),PA3111(folC),PA3112(accD), PA3163(cmk),PA3337(rfaD),PA3636(kdsA),PA3637(pyrG),
PA3643(lpxB),PA3644(lpxA),PA3651(cdsA),PA3666(dapD), PA3673(plsB),PA4006(nadD),PA4050(pgpA),PA4053(ribE),
PA4054(ribB),PA4055(ribC),PA4056(ribD),PA4201(ddlA), PA4397(panE),PA4406(lpxC),PA4410(ddlB),PA4411(murC),
PA4412(murG),PA4414(murD),PA4415(mraY),PA4416(murF)PA4417(murE),PA4425(yraO),PA4442(cysN),PA4443(cysD),
PA4450(murA),PA4457(KdsD),PA4524(nadC),PA4529(coaE), PA4561(ribF),PA4655(hemH),PA4666(hemA),PA4670(prs),
PA4729(panB),PA4730(panC),PA4749(glmM),PA4750(folP), PA4759(dapB),PA4847(accB),PA4848(accC),PA4854(purH),
PA4920(nadE),PA4938(purA),PA4988(waaA),PA4996(rfaE),
PA5009(waaP),PA5010(waaG),PA5011(waaC),PA5012(waaF)PA5034(hemE),PA5162(rmlD),PA5163(rmlA),PA5175(cysQ),
PA5243(hemB),PA5259(hemD),PA5260(hemC),PA5278(dapF)PA5320(coaC), PA5336(gmk), PA5552(glmU)

5 1 2 PA3646(lpxD),PA3807(ndk)

6 1 1 PA3654(pyrH)

7 1 1 PA2968(fabD)

8 1 1 PA0654(speD)

9 1 1 PA1614(gpsA)

10 1 1 PA1609(fabB)

11 1 1 PA3763(purL)

12 1 1 PA4662(murI)

13 1 2 PA4458(yrbI), PA5008(waaX),

14 1 1 PA3659(dapC)

15 1 1 PA1687(speE)

16 1 1 PA3296(phoA)

17 1 1 PA0546(metK)

18 1 1 PA2053(cynT)

19 1 1 PA4748(tpiA)

20 1 2 PA0025(aroE),PA5039(aroK)

21 1 1 PA1681(aroC)

22 1 1 PA0548(tktA)

23 1 1 PA3164(pseudogene)

24 1 1 PA0330(rpiA)

25 1 1 PA5038(aroB)

26 2 1 PA4031(ppa)

27 3 1 PA0904(lysC)

28 4 1 PA2023(galU)

29 5 1 PA3686(adk)

30 6 1 PA1756(cysH)

The representative genes are underlined and marked in bold.
doi:10.1371/journal.pone.0057050.t002
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likely to be utilized by P. aeruginosa upon the stress such as that

imposed by the mutation of essential planktonic growth genes.

Therefore, we analyzed the relative activity changes of each

biofilm-associated reaction across all single mutants, and catego-

rized the 39 biofilm-associated reactions into two types: 1) the

reactions with minor increase of activity levels for most essential

mutants and 2) those with significant activity increase. Figure 4 (A)

and (B) show the typical relative activity changes of two biofilm-

associated reactions: a minor-increase reaction (Reaction Rxn# 1)

and a ‘‘significant-increase’’ reaction (Reaction Rxn# 4). The

relative activity changes of other biofilm-associated reactions are

similar to either the one for Rxn# 1 or that for Rxn# 4 (data not

shown). Reactions associated with each of the two types of

reactions are listed in Table 3.

The ‘‘significant-increase’’ type of reactions have significant

increases in activity levels for the mutants of most essential genes,

and might reveal the underlying mechanisms for biofilm formation

when P. aeruginosa is treated by the antimicrobial agents that attack

the essential genes. It can be seen from Table 3 that these reactions

are mainly involved in acetate metabolism (mainly via Rxn# 4

and 35), arginine metabolism (mainly via Rxn#27 and 34),

glutamate metabolism (mainly via Rxn# 5 and 36), the regulation

of hydrogen peroxide (mainly via Rxn# 22), and the phosphate

transport (mainly via Reaction Rxn #28). These findings are

supported by existing experimental data listed as follows.

N The microarray data presented in Prüss et al, 2010 [44] show

that acetate metabolism acts as a metabolic sensor for adjusting

the biofilm structure of E. coli K12 to the change of the

surrounding environment.

N It is reported by Beenken et al., 2004 [45], that the arginine

plays an important role in generation of ammonia that can

neutralize acids generated by bacterial glycolysis in Staphylo-

coccus aureus biofilms.

N The isomerization process of glutamate is one of the crucial

steps influencing the transport and accumulation of extracel-

lular substances for biofilm formation of Bacillus amyloliquefaciens

[46].

N Hydrogen peroxide is involved in the lysine oxidase activity

that causes cell death within micro-colonies during biofilm

formation of both Marinomonas mediterranea and Pseudoalteromonas

tunicata [47].

N It is reported by Monds et al., 2007 [48], that the extracellular

phosphate in the environmental conditions is involved in the

regulation of Pseudomonas fluorescens Pf0-1 biofilm formation.

The phosphate transport thus influences the biofilm develop-

ment by coordinating the extra and intracellular phosphate

concentrations.

Figure 3. The relative activity change of biofilm-associated reactions for representative mutants. (A) PA0945 from Group 1 in Cluster 1,
(B) PA5038 from Group 25 in Cluster 1, (C) PA4031 from Group 26 in Cluster 2, (D) PA0904 from Group 27 in Cluster 3, (E) PA2023 from Group 28 in
Cluster 4, (F) PA3686 from Group 29 in Cluster 5, and (G) PA1756 from Group 30 in Cluster 6. The relative activity change of a biofilm-associated
reaction is quantified by the relative flux change of this reaction upon the mutation of a single essential gene. The biofilm formation capability of a
mutant is indicated by the relative activity change across all biofilm-associated reactions. If certain biofilm-associated reactions exhibit significantly
enhanced activity levels, the mutant has large potential to form biofilms. Approximately 10 of the biofilm-associated reactions are of significantly
increased activity levels upon the mutation of the genes from Cluster 1, and the activity levels of 6 biofilm-associated reactions surge in the mutants
of the genes from Cluster 2. The mutants from Clusters 1 and 2 thus have high potential to form biofilms. Compared to the large relative activity
increases of biofilm-associated reactions for mutants associated with Clusters 1 and 2, the activity level increases are minor for the mutants of the
genes from Clusters 3 through 6. These mutants thus have low potential to form biofilms.
doi:10.1371/journal.pone.0057050.g003

Figure 4. Relative fold change in activity levels of two biofilm-associated reactions for all single mutants. (A) Reaction Rxn# 1, and (B)
Reaction Rxn# 4. The activity level of Rxn#1 is of little change for most essential mutants, while the fluxes are significantly re-distributed through
Rxn# 4 for most mutants. In other words, Rxn# 4 is of much higher activity levels upon the mutation of most essential genes. This implies that Rxn#
4 stands for the mechanism utilized by mutants to form biofilms. Based upon the relative activity change profiles, the biofilm-associated reactions are
categorized into two types, one with minor flux changes upon the mutation of most essential genes (represented by Rxn# 1), and the other with
large flux changes upon the mutation of most essential genes (represented by Rxn# 4).
doi:10.1371/journal.pone.0057050.g004
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While all the aforementioned experiments focus on the

investigation of the impact of individual metabolic modules on

biofilm formation, this work represents the first mathematical

modeling approach for the systemic identification of the under-

lying metabolic mechanisms that facilitate biofilm formation of

single-mutants.

Discussion

The formation of biofilms facilitates the survival of disease-

causing pathogens in hostile environmental conditions. Therefore,

preventing the pathogen’s transition from the planktonic state to

the biofilm growth mode is one of the most important steps to treat

biofilm-associated pathogens. Since the metabolism of pathogens

is determined by the interaction of hundreds of metabolic

reactions, genes, and enzymes, systems biology approaches can

facilitate gene target identification for preventing the planktonic to

biofilms transition. In this work, a systems-level analysis approach

was presented to answer the following question that still remains

unanswered, that is, how to mathematically quantify the capability

of a pathogen to form biofilms upon the mutation of a specific

gene. The fluxes through the reactions associated with an essential

planktonic-growth gene are limited to 10% of their nominal values

in flux balance analysis to mimic the mutation of the gene in this

work. Although the approach used here is a partial shutdown

instead of a complete gene-knockout mutation, it better reflects the

response of pathogens to the treatment of antimicrobial agents,

which generally cannot immediately eliminate the biological

functions of the target genes. The mutant might form biofilm

before antimicrobial agents completely eliminate the bacterial

metabolism. In addition, the pathogen might be treated by a sub-

inhibition dose, which can be mimicked by setting the allowable

fluxes to 10% of their nominal values. The terminology ‘‘mutant’’

or ‘‘mutation’’ is still used in this work, although an in silico partial

shutdown mutation is performed to identify gene targets from

those essential planktonic-growth genes of P. aeruginosa.

Based upon the results in this work, it is interesting to

hypothesize that the mutations of essential genes are more likely

to induce P. aeruginosa biofilm than those of non-essential ones. For

essential genes, the mutations of 132 out of the 136 essential

planktonic-growth genes were predicted to induce biofilm

formation, and the down-regulation of 8 of them, i.e., pyrH, tktA,

tpiA, rpiA, dapD, and rmlA [38], glmU [36], and pgsA [37], has been

experimentally proven to be positively correlated with biofilm

formation. In contrast, we find that only two out of 920 non-

essential mutants might induce biofilm formation, when applying

the proposed approach to evaluate the biofilm formation

capability of mutants of the nonessential genes in the P. aeruginosa

model reported by Oberhardt et al., 2008 [16]. For the 920 non-

essential genes, we have followed the experiment approaches

presented in Ueda et al., 2009 [34], to carry out comprehensive

screening experiment for altered biofilm mutants from the PA14

non-redundant transposition mutant library (Liberati et al., 2006,

[49]). The library contains 835 of the 920 non-essential genes, and

of these 835 mutants, 823 have been verified not to induce biofilm

formation (data can be provided upon request). While we

predicted a lower number of mutants that form biofilms (i.e.,

two by prediction versus 12 by experiment), this is probably

because we use a conservative approach in mimicking partial

shutdown mutation, in which a reaction that is catalyzed by

multiple enzymes is not inhibited for single mutants, but on the

whole the results were verified for the vast majority of the bacteria

with mutations in non-essential genes. The potential reason for

explaining the hypothesized strong biofilm formation capability of

most essential mutants is that the mutation of an essential

planktonic-growth gene might cause limited nutrient uptakes,

which strongly enhance biofilm formation [6], and make the

pathogen feel the stress, which is reported as one of the major

driving forces for biofilm formation [50]. On the contrary, when a

non-essential gene is inhibited, the pathogen does not feel very

much stress, because non-essential genes are not crucial for the

biomass synthesis. This hypothesis as well as the findings of the

biofilm formation phenotypes of single mutants forms the

foundation for the further experimental investigation.

This work was mainly focused on investigating the biofilm

formation capability of single mutants, as the single gene inhibition

is easier to implement than the multiple gene inhibition. While it is

possible to apply the proposed approach to multiple-mutants, the

ACHR sampling approach needs to be upgraded to improve the

computational efficiency. It takes approximately 15 minutes to

obtain 20,000 samples of fluxes of the biofilm-associated reactions

upon the mutation of a single gene for a desktop computer with

Table 3. Categorization of the biofilm-associated reactions based upon their relative activity changes in the mutants of 136
essential planktonic-growth genes.

Category of biofilm-associated reactions Biofilm-associated reactions included in each cluster

‘‘Minor-increase’’: reactions with minor activity
changes for most 136 single mutants

Rxn#1,3, 6,21, 23,26, 29,33, 37,39 in Table 1

‘‘Significant-increase’’: reactions with large
increase (e.g., more than three-fold relative
change) in their activity levels for most single mutants

Rxn#4: Coenzyme A + 3-Oxoadipyl-CoA R Acetyl-CoA + Succinyl-CoA

Rxn#5: 4-Aminobutanoate + 2-Oxoglutarate R L-Glutamate + Succinic semialdehyde

Rxn#22: 2 Hydrogen peroxide R 2 H2O + O2

Rxn#27: N(omega)-(L-Arginino)succinate « L-Arginine + Fumarate

Rxn#28: ATP + H2O + Phosphate[e] R ADP + H+ + 2 Phosphate[c]

Rxn#34: L-Aspartate + ATP + L-Citrulline R AMP + N(omega)-(L-Arginino)succinate + H+ +
Diphosphate

Rxn#35: Acetate + ATP + Coenzyme A R Acetyl-CoA + AMP + Diphosphate

Rxn#36: 2 ATP + L-Glutamine + H2O + Bicarbonate R 2 ADP + Carbamoyl phosphate + L-
Glutamate + 2 H+ + Phosphate

doi:10.1371/journal.pone.0057050.t003
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Intel Core i5 2.5 GHz CPU and 8 GB RAM. Since 920

nonessential genes have been reported in Oberhardt et al., 2008

[16], it is very time-consuming to study the biofilm formation

ability of all possible multiple-mutants. Nevertheless, the study of

the impact of the multiple-gene mutation on biofilm formation is

an interesting topic for the future research.

To the best knowledge of the authors, this work represents the

first systems-level approach to incorporate the quantification of

biofilm formation capability in evaluation of genes as the targets to

treat biofilm-associated pathogens. Four essential planktonic-

growth genes, i.e., PA0904 (lysC), PA1756 (cysH), PA3686 (adk),

and PA2023(galU), were identified as the potential gene targets to

treat P. aeruginosa, as the mutation of any of these genes can

eliminate the pathogen without inducing biofilm formation. This

finding is implied by existing experimental data. Based upon the

relative activity change of biofilm-associated reactions over all the

single mutants, it is interesting to find that the fluxes of

approximately 8 biofilm-associated reactions significantly increase

for most single essential mutants. They are mainly associated with

acetate metabolism, arginine metabolism, and glutamate metab-

olism. All these findings can be used to generate hypotheses for

experiment design. In addition, the proposed approach can be

applied to identify gene targets for treating any other biofilm-

associated pathogen if the genes positively associated with biofilm

formation have been identified and the metabolic model has been

developed for the pathogen.

Materials and Methods

In this section, the systems-level approach whose outline is

shown in the illustrative example (Figure 1) is described. This

approach is used to quantify the biofilm formation capability of

single essential mutants, cluster essential genes according to the

biofilm formation capacity of their mutants, and systematically

identify the metabolic reactions whose activity levels significantly

increase for most single essential mutants. The detail of the

proposed approach is shown step by step as follows.

N Step 1: Genes positively associated with biofilm formation of

the target pathogen are identified and are overlaid onto the

metabolic network of the pathogen to determine the reactions

positively associated with biofilm formation.

The fluxes of these biofilm-associated reactions are used as soft

sensors to monitor the ability of a mutant to form biofilm. In

particular, if the fluxes (i.e., activity levels) of certain biofilm-

associated reactions significantly increase upon the mutation of

an essential planktonic-growth gene, the pathogen might form

biofilms before it is eliminated by the antimicrobial agents

which attack that essential gene. In other words, the essential

gene is not a good target to treat the pathogen.

N Step 2: An integrated flux balance analysis and ACHR

sampling approach is applied to determine the relative change

of the flux distribution of individual biofilm-associated

reactions upon the mutation of an essential gene.

FBA is a standard tool to determine the reaction fluxes through

the entire metabolic network under the assumption that the

microorganism utilizes available nutrients to get the maximum

growth rate [19,51]. FBA can be regarded as a linear

programming problem given by Equation (1).

max
v

vbiomass

Subject to :
X

S:v~0

lbiƒviƒubi

where vbiomass is the biomass growth rate, S[Rnm|nr is the

stoichiometric matrix, nm and nr are the number of metabolites

and metabolic reactions respectively, v is a vector containing

fluxes for all reactions in the metabolic network, lbi and ubi are

the lower and upper bounds of flux vi. FBA is performed to

predict the maximum microorganism growth rate under a

specific nutrient environment specified by the lower and upper

bounds of fluxes. Equation (1) can be solved by the program

package GNU Linear Programming Kit (GLPK) [52].

Since the number of metabolic reactions (i.e., nr) is generally

larger than the number of metabolites (i.e., nm) in the reaction

network, the stoichiometric matrix S is underdetermined. The

optimal solution for Equation (1) is typically not unique [53].

In this work, the solution space corresponding to the

maximum growth rate is sampled using ACHR sampling. In

particular, the ACHR sampling routine provided by the Cobra

toolbox [19,51] is used to get N flux samples for each metabolic

reaction from the solution space, where N is a large number

(e.g., 20,000) that can make the sampling process converge.

For each metabolic reaction, its N sampled flux values are

analyzed to quantify the mean value (represented by mvi
), and

the probability density function of fluxes (represented by fvi
) in

the solution space. i is the index of a metabolic reaction.

The aforementioned approach is used to sample fluxes of

biofilm-associated reactions for the wild-type strain and the

single essential mutants. The corresponding mean value, and

probability density function quantified from the sampled fluxes

for each biofilm-associated reaction are represented by mwild
vn

and f wild
vn

for the wild-type strain, and mgene m
vn

and f gene m
vn

for

gene m mutant. n is the index of a biofilm-associated reaction.

To mimic the mutation of an essential gene m in flux balance

analysis, the upper bounds of fluxes of reactions associated

with the essential gene m are set to 10% of the mean value of

their N sampled fluxes obtained for the wild type strain. If a

reaction is reversible, the lower bound of its flux is set to 210%

of the mean value of its N sampled fluxes obtained for the wild

type strain. The pathogen might form biofilms before the gene

target is totally inhibited. A 90% flux reduction can mimic the

growth pattern of the pathogen before antimicrobial agents

completely abolish the biological functions of their targets. In

addition, the sub-inhibition of a good gene target should not

induce the formation of biofilms before antimicrobial agents

totally inhibit its biological functions.

N Step 3: The trend to form biofilms for the mutant of essential

gene m is quantified by comparing the distribution of fluxes of

each biofilm-associated reaction, represented by mgene m
vn

and

f gene m
vn

, to its counterpart mwild
vn

and f wild
vn

obtained for the wild-

type strain.

The Kolmogorov – Smirnov (K-S) test approach [54] is first

applied to determine whether the distribution of fluxes of each

biofilm-associated reactions (i.e., f gene m
vn

with n = 1, 2, � � �,
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numbiofilm-reactions), is of statistically significant change from the

corresponding distribution obtained for the wild-type strain

(i.e., f wild
vn

, n = 1, 2, � � �, numbiofilm-reactions). numbiofilm-reactions

refers to the total number of biofilm-associated reactions. The

two sample K-S test routine kstest2 from MATLAB is used to

perform K-S test, at a 5% significance level. If the two

distributions f gene m
vn

and f wild
vn

are different, KS(f gene m
vn

,f wild
vn

) is

equal to one, otherwise, KS(f gene m
vn

,f wild
vn

) is set to zero.

The difference between the two distributions f gene m
vn

and f wild
vn

is further quantified by the following equation

Activity Vargene m
vn

~
mgene m

vn
{mwild

vn

mwild
vn

|KS(f gene m
vn

,f wild
vn

)

where Activity Vargene m
vn

is the relative fold change of the

activity (i.e., the flux) of the biofilm-associated reaction n upon

the mutation of the essential gene m. Equation (2) is applied to

all biofilm-associated reactions. An activity-variation vector is

then constructed as shown in Equation (3) to describe the

change in the distributions of fluxes across all biofilm-

associated reactions upon the mutation of gene m.

Vector activity vargene m~

½Activity Vargene m
v1

Activity Vargene m
v2

� � �

Activity Vargene m
vnum biofilm{reactions

�

where Vector activity vargene m is referred to as the relative

activity change profile for the gene m mutant in the following

text. When Equation (3) is applied to all genes that are essential

for planktonic growth, a matrix given by Equation (4) is

constructed, which shows in each column the relative activity

changes of one biofilm-associated reaction i for the mutants of

all essential genes, and which shows in each row the relative

activity changes in all biofilm-associated reactions upon the

mutation of one essential gene.

Matrix activity var~

Activity Vargene 1
v1

Activity Vargene 1
v2

� � � Activity Vargene 1
vnum biofilm{reactions

Activity Vargene 2
v1

Activity Vargene 2
v2

� � � Activity Vargene 2
vnum biofilm{reactions

..

. ..
.

P
..
.

Activity Var
gene numgene
v1

Activity Var
gene numgene
v2

� � � Activity Vargene numgene
num biofilm{reactions

2
6666666664

3
7777777775

where numgene is the total number of essential genes for the plank-

tonic pathogens. It can be seen from Equation (4) that the activity-

variation vector Vector activity vargene m given in Equation (3)

constitutes one row of Matrix_activity_var.

N Step 4: Potential gene targets are identified from the essential

planktonic-growth genes by hierarchically categorizing them

into different clusters based upon the capability of their

mutants to form biofilms.

One hypothesis to test in this work is that the mutation of an

essential gene might induce the formation of biofilms.

Vector activity vargene m shown in Equation (3) describes the

relative change of activity levels of all biofilm-associated

reactions for the gene m mutant. Vector activity vargene m is

thus used to represent the trend of biofilm formation upon the

mutation of gene m. In particular, if certain elements in

Vector activity vargene m, are of values larger than three, it

means a significant amount of fluxes are re-distributed in the

biofilm-associated reactions. The mutant thus exhibits high

potential to switch from the planktonic state to the biofilm

growth mode. In this work, the essential genes are categorized

into different clusters based upon the capability of their

mutants to form biofilms. The clustering result is then used to

determine the gene targets to treat biofilm-associated patho-

gens. Specifically two relative activity change profiles are used

to quantify the similarity of the impact of the mutation of two

genes on biofilm formation via Equation (5).

Similarityj,k

~
(Vector activity vargenei)T|Vector activity vargene k

Vector activity vargenei
�� �� Vector activity vargene k

�� ��

|
2

Vector activity vargenei

Vector activity vargene k
z Vector activity vargenek

Vector activity vargene i

where Similarityi,k defines a similarity measure of the biofilm

formation capability of the mutants of genes i and k. If the

similarity measure is equal to unity, the mutations of the two

genes have the same impact on the formation of biofilms.

Vector activity vargenei is the average relative activity change

over all biofilm-associated reactions upon the mutation of gene

i. The first term on the right-hand side of Equation (5) reflects

the similarity of the shapes of activity change profiles contained

i n Vector activity vargene i a n d Vector activity vargene k:
If these two activity change profiles are parallel, e.g.,

Vector activity vargene k equal to 3|Vector activity vargene i,

the first term is of a value of one. For this case, if only the first term

is used as the measurement of similarity, the mutation of gene k is

determined to have the same impact on biofilm formation as that

of gene i. However, this is not true as the activity change

magnitude in the mutant of gene k is three times of that for the

gene i mutant. The second term on the right-hand side of

Equation (5) is thus used to take the magnitude of activity change

into account in the evaluation of similarity. If the activity change

magnitudes of two profiles are quite different, the denominator of

the second term is large. This reduces the similarity value of the

two activity change profiles. Only two activity change profiles

with similar shapes and comparable magnitudes are of a large

similarity value.

Based upon the quantified similarity, the genes essential for

planktonic growth can be hierarchically categorized into different

clusters via the hierarchical clustering routine dendrogram from

MATLAB. Those essential planktonic-growth genes upon which

the mutations lead to a low enhancement in the activity levels

across biofilm-associated reactions are identified and regarded as

good gene targets to treat biofilm-associated pathogens.

N Step 6: The metabolic reactions that facilitate biofilm

formation in the single essential mutants are determined by

identifying biofilm-associated reactions whose activity levels

surge in most mutants. Each column in Matrix_activity_var
shown in Equation (4) lists the relative change of the activity of

one biofilm-associated reaction upon the mutation of all

essential genes. Those biofilm-associated reactions whose

activity levels significantly increase for most single-mutants

account for the underlying metabolic mechanisms that

facilitate biofilm formation in these mutants. In this work,
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the average relative activity change for a biofilm-associated

reaction, Activityvi
, is quantified by Equation (6). Based upon

the value of Activityvi
the biofilm-associated reactions are

categorized into two types, one containing reactions with

minor activity increase and the other containing reactions with

large activity increase for most single-mutants. Two types were

preferred here, as the simulation result showed that the relative

flux activity changes of a biofilm-associated reaction over most

mutants can be generally characterized by either minor

changes or significant ones. The k-mean clustering routine in

MATLAB is used to perform the clustering operation.

Activityvi
~

Pnumgene

m~1

DActivity Vargene m
vi

D

numgene
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