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ABSTRACT 

 Antibody drugs play a critical role in infectious diseases, cancer, autoimmune diseases, and 

inflammation. However, experimental methods for the generation of therapeutic antibodies such 

as using immunized mice or directed evolution remain time consuming and cannot target a 

specific antigen epitope. Here, we describe the application of a computational framework called 

OptMAVEn combined with molecular dynamics to de novo design antibodies. Our reference 

system is antibody 2D10, a single-chain antibody (scFv) that recognizes the dodecapeptide 

DVFYPYPYASGS, a peptide mimic of mannose-containing carbohydrates. Five de novo 

designed scFvs sharing less than 75% sequence similarity to all existing natural antibody 

sequences were generated using OptMAVEn and their binding to the dodecapeptide was 

experimentally characterized by biolayer interferometry and isothermal titration calorimetry. 

Among them, three scFvs show binding affinity to the dodecapeptide at the nM level. Critically, 

these de novo designed scFvs exhibit considerably diverse modeled binding modes with the 

dodecapeptide. The results demonstrate the potential of OptMAVEn for the de novo design of 

thermally and conformationally stable antibodies with high binding affinity to antigens and 

encourage the targeting of other antigen targets in the future. This article is protected by copyright. 

All rights reserved 

 

Keywords: OptMAVEn; computational antibody design; de novo design; antibody structure 

prediction; single-chain antibodies; biolayer interferometry 
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   INTRODUCTION 

 Antibodies are protective proteins used by the immune system to recognize and neutralize 

foreign objects through interactions with a specific part of the target, called an antigen. The high 

specificity and binding affinity of antibodies with antigens enables them to be used as therapeutic 

agents for the treatment of different diseases (Nelson et al. 2010).  Although these methods are 

effective, they remain time consuming, cannot target a specific epitope, and are unable to tolerate 

rapid changes of antigens(Sormanni et al. 2015). Hence, advances in antibody design technology 

and a deeper understanding of the action of therapeutic antibodies are required for improved 

therapeutic antibodies(Tiller and Tessier 2015). Computational methods for the de novo design 

of a fully human antibody against any specific antigen provide a route to resolve these issues(Li 

et al. 2014). This strategy, if validated, could offer a general route to therapeutic antibodies for 

many pathogens that have resisted traditional vaccine development, including highly 

antigenically-variable viruses such as HIV, influenza and Ebola virus.  

 To this end, we have developed a computational framework named Optimal Method for 

Antibody Variable region Engineering (OptMAVEn)(Li et al. 2014) for the de novo design of 

fully-human antibody variable domains to bind any specified antigen by assembling the six best-

scored modular antibody parts (MAPs)(Pantazes and Maranas 2013). In particular, OptMAVEn 

is implemented as a three-step workflow. First, for a given antigen, an ensemble of possible 

antigen binding conformations is generated in a modeled antibody-binding site. Second, the top 

scored antigen conformations and antibody models assembled by the combinations of six 

modular antibody parts from the MAPs database are selected. Third, random mutations are 

introduced to the antibody models for improved binding affinity to the antigens.  This idea is 

inspired by the natural evolution of an antibody in vivo, in that the gene of a “germline” antibody 

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

variable domain is initially assembled by combining random variable (V), diversity (D), and 

joining (J) “germline” genes to create an antibody variable domain(Peled et al. 2008). We have 

created the MAPs database(Pantazes and Maranas 2013) approximately analogous to the 

naturally occurring human repertoire of V, D and J genes. To improve the description of 

antibody structures, the MAPs database utilizes CDR3 as a structural component instead of D 

region (heavy chain) and partial region of V region (light chain). The primary advantage of using 

MAPs to de novo assemble an antibody model is that the computational overhead is manageable 

as the need for de novo folding calculations is bypassed by assembling structural domains. In 

addition, compared to traditional fragment-assembly-based approaches(Simons et al. 1997) for 

de novo protein structure prediction, OptMAVEn efficiently samples both local and non-local 

contacts that are inherently present in the relatively large structural fragments. To generate 

antibodies of high quality, molecular dynamics (MD) simulation is incorporated in the present 

study into the design workflow of OptMAVEn to screen against unstably bound with antigen 

antibodies. Although OptMAVEn is capable of generating novel computational antibody models 

with numerous interactions with their target epitopes, the feasibility of this protocol has not been 

validated by experiments until now.  

  Using OptMAVEn, we de novo designed single-chain antibodies (scFvs) against the 

dodecapeptide antigen DVFYPYPYASGS. The dodecapeptide with its Tyr-Pro-Tyr motif 

mimics the carbohydrate methyl α-D-mannopyranoside, which has been studied extensively 

since it is the recognition target of lectin concanavalin A (con A) and mAb-2D10(Krishnan et al. 

2007; Tapryal et al. 2013).  Association with the two antigens (dodecapeptide and methyl α-D-

mannopyranoside) occurs at different sites for con A. Because 2D10-Fab (fragment antigen-

binding) could not be crystallized, a shorter recombinant scFv-2D10 was constructed, 
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refolded(Tapryal et al. 2010), and crystallized with both antigens which revealed that 2D10 has a 

rigid binding site that does not change upon antigen binding(Tapryal et al. 2013). We chose 

dodecapeptide antigen (DVFYPYPYASGS) to test the OptMAVEn designs because it is easily 

synthesized, has a crystal structure bound to the scFv-2D10 (PDB ID 4H0H)(Tapryal et al. 

2013), and scFv-2D10 can be produced in Escherichia coli and activated by in vitro 

refolding(Tapryal et al. 2010). 

 We designed five de novo scFvs possessing distinct sequences compared to all existing 

natural antibody sequences that can bind with the dodecapeptide antigen using OptMAVEn. 

Since the stability and activity of a protein often depend not only on its static structure but also 

on its dynamic properties(Mou et al. 2015), an additional conformational sampling and stability 

evaluation using MD simulation was performed. The lack of sequence similarity between our 

designs and scFv-2D10 demonstrates that the OptMAVEn procedure broadly samples the vast 

sequence space and arrives at designs unbiased by the original antibody residue composition.  

All five scFvs were found to be actively folded and stable in solution, and three of the scFvs 

showed high binding affinity to the dodecapeptide antigen (nanomolar level) while exhibiting 

diverse binding modes to the antigen. The results demonstrate that OptMAVEn combined with 

MD simulation are a promising computational approach for the de novo design of thermally and 

conformationally stable antibodies with high binding affinities. 

MATERIALS AND METHODS 

Computational antibody generation. Figure 1 shows an overview of OptMAVEn to design the 

entire variable domain of an antibody targeting a specific epitope (Supplementary Text 1). 

Framework domains of OptMAVEn generated antibodies were aligned with existing antibodies 

(Supplementary Data 1) to identify allowed mutable residues. 
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Experimental procedures. A series of experimental steps involving cloning methods (fasta 

sequences of scFvs in Supplementary Data 2 and oligonucleotide sequences used for amplifying 

the scFvs in Supplementary Table I), expression, purification and refolding (Supplementary 

Table II) of scFvs, analysis of refolded scFvs by circular dichroism (CD), scFv-antigen binding 

affinity measurements by biolayer interferometry and isothermal titration calorimetry were 

described in detail in Supplementary Text 1.  

RESULTS 

Computational workflow with the incorporation of MD simulation. “Germline” antibody 

models with favorable dodecapeptide interactions were generated using OptMAVEn. Table I 

shows the diversity in the chosen antibody parts to recognize the manifold spatial poses of the 

antigen. Thereafter, all-atom MD simulations were performed to computationally assess the 

stability of the antibody binding site with the epitope. Additionally, for the antigens that bind 

stably with the antibody, the interaction at the antigen-antibody interface was refined during MD 

simulations. The root mean square deviations (rmsd) of the antigen with respect to the antibody 

were plotted in Fig 2a and listed in Supplementary Table III. Antigens with low binding affinity 

are seen to unbind from the antibody within 50 ns. To ensure the antigen-antibody interface is 

sufficiently refined, every complex was simulated for 100 ns. Eight out of the 31 designs (Fig. 

2a-g) were stably bound throughout the 100 ns-long MD simulations (see Supplementary Text 2 

and 3 for details). 

In silico affinity maturation. The assembled “germline” antibodies were expected to have only 

low or moderate binding affinity to the antigen. To further enhance antibody affinity we 

performed in silico affinity maturation to the MD-refined “germline” antibodies by randomly 

selecting mutations that are predicted to improve binding energy. Mutations were not limited to 
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residues within the CDR loops but allowed to arise along the entire variable fragment sequence. 

However, mutations in residues in the CDRs were allotted a 3-fold higher preference over those 

in the frameworks (FRs) to match expected mutational patterns observed in matured 

antibodies(Pantazes and Maranas 2013). Twenty-seven “germline” antibodies refined by MD 

were submitted for in silico affinity maturation. The complex and IEs were used to evaluate the 

stability of the complex and the binding strength between the antibody and antigen, respectively. 

Not surprisingly, we found that the best ten designs with the lowest IE (ranging from -550 to -

360 kcal/mol) were from groups MD_SB (four) and MD_RE (six) while none were from group 

MD_PB (Supplementary Table IV). This is indicative of the difficulty in introducing favorable 

interactions to designs with antigens partially bound. 

 Designs from group MD_SB were preferred as the binding location and mode was fully 

retained after MD simulation(Kiss et al. 2010).  We selected four designs from group MD_SB 

with the lowest complex and interaction energies (Table II) denoted as scFv-1 (120_6290_1), 

scFv-2 (120_15439_2), scFv-3 (140_10149_1) and scFv-4 (140_15899_5). In addition, we 

selected design scFv-5 (200_15222_5) that did not have one of the lowest complex and 

interaction energies but possessed the same binding mode as the selected design 200_15222_2. It 

is important to note that in the five selected designs the sequence distribution of mutations 

involved in affinity maturation is very diverse, with no clearly preferred amino acids/positions 

(Supplementary Fig. 1). The total number of accumulated mutations in mature form of scFv-1-4 

is between 34% and 38% (Table II) compared to their “germline” versions. This is somewhat 

higher than what is seen in natural antibodies (typically 5 to 20% changes in somatic mutations 

and average ~27 mutations per antibody variable domain(Burkovitz et al. 2014)) but comparable 

to that of HIV-1-neutralizing antibodies (ranging from 15% to 44%(Corti and Lanzavecchia 
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2013)) which take several years to accumulate.  Our results suggest that the mutation rate from 

computational affinity maturation is higher than the average mutation rate in nature but 

comparable to that of somatic mutations evolved in vivo. Furthermore, all five designed 

antibodies share less than 50% sequence similarity with the scFv-2D10 antibody (Fig. 3 and 

Table III) and less than 60% sequence similarity within the design cohort (Table III). We also 

compared the sequences of our five designs with non-redundant protein sequences (77,704,910 

sequences) using BLAST(Altschul et al. 1990) and the nearest sequence to the designs identified 

in the protein database is CAA81438.1 (accession number). This sequence has only 74% identity 

with the heavy chain of scFv-5 (Supplementary Table V), which suggests that the de novo 

designs truly sample new antibody sequences not observed in existing antibody sequence space. 

The stated five designs (scFv-1 to scFv-5) were chosen for experimental characterization. 

Purification of the de novo-designed scFvs. We produced six scFvs (five de novo designed 

scFvs and scFv-2D10) in E. coli as inclusion bodies and refolded them to validate the binding of 

de novo scFvs to antigen. Each scFv was built with a heavy chain (VH) and light chain (VL) of 

the variable regions, a hexa-histidine tag at the C-terminus, and a glycine-serine flexible linker 

(Gly4Ser1)3 between the VH and VL regions (Fig. 4a), and was amplified with the respective 

primers (Fig. 4b). Note that the His tag was 42 Å away from the antigen-peptide active binding 

site so it is unlikely to affect antigen binding. All the scFvs formed inclusion bodies after 

induction with IPTG, and the inclusion bodies were washed in Triton X-100 detergent for 

removal of membrane debris(Palmer and Wingfield 2004), solubilized in 8M urea, and purified 

via FPLC using Ni-NTA affinity chromatography. The purified scFvs were refolded by gradually 

reducing the urea concentration (from 8 M to 0 M, Supplementary Table II). To accomplish 

removal of urea from 2 M to 0 M, arginine hydrochloride to suppresses protein aggregation and 
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oxidized glutathione for the formation of disulfide bonds was added to the refolding 

buffer(Umetsu et al. 2003). Yields for the six scFvs were verified by SDS-PAGE (Fig. 4c). 

Secondary structure analysis of de novo designed scFvs. To confirm correct folding of scFvs, 

the secondary structures of the six purified scFvs were monitored by far-UV CD spectroscopy 

and compared to that of other scFvs(Blanco-Toribio et al. 2014; Glaven et al. 2012; Song et al. 

2014). The far-UV CD spectra (190-240 nm) for the six scFvs (Fig. 4d) showed the scFvs were 

predominantly β-sheets, as expected for typical members of the immunoglobulin family, 

including scFvs (Supplementary Table VI)(Blanco-Toribio et al. 2014; Glaven et al. 2012; 

Gregoire et al. 1996; Lee et al. 2013; Song et al. 2014). The scFv-2D10 (PDB ID- 4H0H) crystal 

structure showed the presence of 4% helical and 47% beta sheet secondary structures(Tapryal et 

al. 2013), whereas the CD data for the scFv-2D10 in our hands retrieved 3.4%, 5%, and 9% 

helical and 40%, 38%, and 27% beta sheet structures from CDSSTR, CONTIN, and GOR4, 

respectively (Supplementary Table 6). With the recognition that CD spectral data is suitable 

primarily for the determination of gross secondary structure changes, the crystal structure 

information (percentage of helical and beta sheet content) for scFv-2D10 (PDB ID- 4H0H) is 

clearly similar to that obtained from CD data both in solution (CDSSTR and CONTIN) 

(Supplementary Table 6) as well as predicted (GOR4) for the de novo designed scFvs (scFv-1 

to scFv-5). Therefore, the CD spectral data indicate that all of our scFvs were folded properly 

and that de novo designs did not cause significant structural distortions.  

Binding of the scFvs to the dodecapeptide using biolayer interferometry. As a quantitative 

assessment of the scFv-antigen complex, the association constant (ka), dissociation constant (kd), 

and equilibrium dissociation constant (KD) values were determined(Fischer et al. 2015; Lee et al. 

2014; Prischi et al. 2010; Tang et al. 2014) by loading the refolded His6 tag scFvs onto Ni-NTA 
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biosensors and titrating with the dodecapeptide antigen using the biolayer interferometry via 

Octet QK system. The scFvs (550 nM) showed binding to dodecapeptide antigen (1000 nM) 

(Fig. 5a). Because of the high concentrations of the antigenic peptide (1000 nM), a dissociation 

curve (kd) was not observed for scFv-1, 2 and 4. From the initial sensogram (Fig. 5a), it was clear 

the antigen as well as antibody concentrations were non-optimal for obtaining the proper kinetic 

rates for each scFv tested against the antigen; hence, we optimized the antigen concentrations 

using a fixed scFv-2 concentration (550 nM) and varying antigen concentrations (1000, 300, 100, 

30, 10, and 3 nM). Only the 100 nM and 30 nM concentrations of antigen displayed the KD 

values of 2.55 nM and 21.5 nM, respectively. The antigen concentration of 30 nM was selected 

to preclude the after effects of addition of high antigen concentrations when deriving the kinetic 

values for each scFv in this study (Fig. 5b). For optimizing the antibody titers, different 

concentrations of scFv-2 (1110, 550, 460, 370, 280 and 180 nM) were tested with a constant 

antigen concentration of 30 nM. The KD values were very close (~ 17.5 nM) for the variable 

scFv concentrations tested, which clearly indicates that changes in antigen concentration impact 

the kinetic data whereas varying scFv concentrations have little effect (Fig. 5c). Since we 

controlled the antigen concentrations (the dodecapeptide antigen was synthesized and loaded the 

same for each scFv), the system is robust for determining the kinetic values for the different 

scFvs. To rule out the non-specific binding with the biolayer interferometry, we also tested our 

system with various negative controls: (i) all the scFvs of our present system were titrated 

against a non-related peptide antigen, and (ii) a non-related scFv which was recombinantly 

cloned, expressed, purified, and refolded similar to the current system was titrated with the 

dodecapeptide antigen. Neither of the two sets of negative controls showed binding which 

confirms the de novo designs were specific towards their dodecapeptide targets (Fig. 5d-e). As a 
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positive control, we obtained a binding constant consistent with an independent lab (0.3 nM) for 

an unrelated DNA-binding protein. Using the optimized scFv (550 nM) and dodecapeptide 

antigen (30 nM) concentrations, the binding constant KD was determined for each de novo 

designed scFv.  Significant binding was observed between de novo designed scFv-1, 2, and 4 

with the antigen along with the scFv-2D10 (Fig. 5f). The scFv-3 and scFv-5 did not exhibit any 

binding. Based on the KD values for all the six scFvs tested, the best proved to be scFv-2D10 (3.7 

nM) followed by scFv-1 (8.9 nM), scFv-2 (14.4 nM) and scFv-4 (23.8 nM) (Table IV).  

 Isothermal titration calorimetry (ITC) was performed to corroborate the biolayer 

interferometry binding results using the best binders from the Octet binding study, scFv-1 and 

scFv-2D10, which showed a positive response with biolayer interferometry. The scFv-1 along 

with scFv-2D10 displayed the ~1:1 binding and showed sigmoidal behavior, an indicative of 

exothermic binding (Supplementary Fig. 2). Because of the high affinity of association (KD) (~ 1 

nM), different presentation of the antigen (not conjugated to BSA), and change in buffer 

conditions from biolayer interferometry, it is difficult to use ITC to measure the equilibrium 

binding constant with precision; however, the enthalpy (ΔH), the entropy (ΔS) and stoichiometry 

(N) of the two scFvs that showed a positive shift with biolayer interferometry are indicative of 

binding to dodecapeptide antigen (Supplementary Table VII)(Kubala et al. 2010). 

Diversity of antibody binding sites in successfully designed scFvs. As all three designs scFv-

1, scFv-2 and scFv-4 exhibit low nanomolar to the dodecapeptide in the binding affinity range, 

their respective residue compositions were assessed to identify structural determinants favorable 

for binding. Figure 6a and 6b show the comparison of the amino acid compositions between the 

“germline” and mature antibodies in scFv-1, 2 and 4. Interestingly, Asp, Glu, Gly, Lys, and Arg 

occur more than any other amino acid (counts  4) in mature sequences, whereas Ala, Asn, Ile, 
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Leu, Thr and Tyr occur less frequently (counts  4). One of the most striking results is the 

dramatic decrease of aromatic residues especially tyrosine, which is consistent with the trend of 

in vivo somatic hypermutations of natural antibodies(Clark et al. 2006). Tyrosine, which can 

provide hydrogen bonding and substantial hydrophobic interaction, is frequently found in the 

paratope of “germline” antibodies to promote low-affinity binding to new antigens(Dalkas et al. 

2014). Another apparent trend is that charged residues are favorable in high-affinity mature 

sequences. Charged-residue driven interaction could provide more specific binding than aromatic 

binding. Meanwhile, the numbers of aliphatic and polar residues are significantly decreased. 

More polar and charged residue occurrences contribute to the improvement of binding affinity 

and complex stability in the solvent. A comparison of mutations before and after affinity 

maturation demonstrates that the net overall effect is a migration from residue types that could 

provide nonspecific binding to new ones that generally provide specific binding. 

 The sequence diversity of the three scFvs alludes to the presence of diverse modes of antigen 

recognition. A detailed view of the modeled interactions between the three scFvs and 

dodecapeptide (Fig. 6 c-f) reveals the differences with the scFv-2D10 antibody. In the natural 

antibody-peptide complex, the phenyl rings of the CDR H2 residue Tyr55 and CDRH3 residue 

Tyr102 of the antibody form π–π stacking interactions with the phenyl rings of the antigen 

residues Tyr4 and Tyr6, respectively. In contrast, cation/amino–π interactions are found to be 

significantly more frequent in the designed scFvs. For example, the amino group of Lys113 in 

the H chain of scFv-1 forms cation-π interaction with the phenyl ring of the antigen residues 

Tyr6 and the amino group of Lys66 in the H chain of scFv-4 forms cation-π interactions with the 

phenyl ring of the antigen residues Tyr6. This finding is in agreement with previous studies 

demonstrating that cation–π interactions are an important stabilizing factor that is more 
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frequently found in antibody-antigen than in protein-protein interfaces(Dalkas et al. 2014). The 

analysis of the hydrogen bond pairs revealed a preference of the hydrogen bonds formed between 

charged residues in the designs with the antigen. For example, Glu59 in the H chain of scFv-1 

forms a hydrogen bond with the hydroxyl group of the antigen Tyr8; Asp34 and Glu108 in the L 

chain of scFv-2 forms a hydrogen bond with the hydroxyl groups of the antigen Tyr6 and Tyr8, 

respectively; the CDRH3 residue Asp109 of scFv-4 forms a hydrogen bond with the main chain 

nitrogen of Phe3. Notably, mutations to charged residues during affinity maturation also 

contribute considerably to the heavy chain variable domain–light chain variable domain (VH–VL) 

association, which might stabilize the two domains and maintain the relative positions of the 

CDRs loops, which, in turn, can affect the antigen specificity(Chailyan et al. 2011). For example, 

the CDRH3 residue Lys114 (mutated from Ala) of scFv-1 form interaction with Tyr 55 of the L 

chain; the CDRL2 residue Arg56 (mutated from Glu) of scFv-2 interacts with Glu113 (mutated 

form Asn) of the heavy chain; the CDRL2 residue Arg56 (mutated from Ala) of scFv-4 interacts 

with Asp109 of the heavy chain. 

DISCUSSION 

 Despite significant progress over the past few years, the success rate of computationally 

designed libraries of antibodies to bind difficult-to-target epitopes is still very low(Kuroda et al. 

2012) mostly due to our limited understanding of the process of antibody affinity maturation in 

vivo. It is often unclear how “germline” antibodies are assembled in the first response to antigens 

and how the mutations selected during the affinity maturation process contribute to improving 

binding affinity or selectivity or stability.  To overcome these challenges, we first developed an 

approach named OptCDR(Pantazes and Maranas 2010) that is the first formal computational 

workflow for optimally selecting the residue composition of the CDRs to enhance binding for a 
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given antigen. OptMAVEn(Li et al. 2014) extends this to de novo designing the entire variable 

region of antibodies by drawing structural parts from the MAPs database(Pantazes and Maranas 

2013), inspired by the natural evolution of an antibody in vivo, where the gene of a “germline” 

antibody is initially assembled by V-(D)-J recombination. In the present study, we aimed to 

experimentally validate epitope-focused antibody design by designing antibodies against a small 

peptide. 

 Despite the challenges encountered in the de novo design of antibodies, antibody generation 

in silico targeting a 12-mer antigen was shown here to be successful. Five optimally binding 

antibodies in the format of scFv emerged as anti-peptide candidates for experimental 

characterization. Among them, three show experimentally-validated binding to the 

dodecapeptide in the low nanomolar range without any directed-evolution effort. To our 

knowledge, the three scFvs are the first experimental validated high-affinity antibodies 

completely de novo designed in silico.  

 The success rate (three out of five designs, 60%) in de novo antibody design using 

OptMAVEn coupled MD simulations is much higher than those of de novo protein binder design 

against the steroid digoxigenin (2 out of 17 designs, 12%)(Tinberg et al. 2013) and stem region 

of influenza hemagglutinin (2 out of 73 designs, 3%)(Fleishman et al. 2011). This quantitatively 

demonstrates the efficacy of OptMAVEn coupled MD simulations in capturing the critical 

structural features of antibodies key to tight binding to antigens. Due to the similarity of general 

structures of the antibodies, OptMAVEn mediated de novo antibody design could efficiently 

sample both local and non-local contacts that are inherently present in the antibody structures 

using relatively large structural fragments (V, D, and J modular parts) extracted from known 

crystal structures, which is important for the successful design.  All-atom, explicit solvent MD 

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

simulations have previously proved to be effective at discerning active from inactive 

computationally designed Kemp eliminases(Kiss et al. 2010; Privett et al. 2012) and aiding in the 

prediction of domain swapping of computationally designed engrailed homeodomain protein 

variants(Mou et al. 2015). Inspired by their success, we carried out MD simulations for all de 

novo designed “germline” antibodies with the dodecapeptide prior to in silico affinity maturation 

and experimental validation. Success using MD underlines its importance as a routine approach 

for involving dynamic properties of proteins in the selection. Encouragingly, all three of our 

designs exhibit high binding affinity, suggesting the potential of completely bypassing the 

laborious and time-consuming in vitro directed evolution and directly obtaining high affinity 

antibodies against a specific antigen.  

 Comparison of “germline” and mature sequences in the three successful designs show that a 

large number of mutations (>35%) in both framework and CDRs regions were introduced by in 

silico affinity maturation protocol. Although design scFv-5 correctly folded in solution, the 

failure of design scFv-5 (possessing only 22% mutations during computational affinity 

maturation) binding to the antigen might be due to the shortage of favorable mutations 

incorporated. Charged residues, especially Lys, are significantly preferred in our affinity matured 

designs. Analysis of the modeled interactions between the three successful scFv-dodecapeptide 

designs show that the CDR H3 loops of all the designed scFvs involve direct interactions with 

the antigen and highlight that the cation–π interactions and hydrogen bonds formed between 

them by charged residues are critical determinants for the high binding affinity.  

 Furthermore, the differences with our scFv designs and the naturally-occurring antibodies 

suggest that computational de novo designs generate a variety of possible antibody solutions 

binding to the same antigen alluding to a plethora of possible binding possibilities to achieve 
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high affinity. OptMAVEn’s epitope-specificity implies that a cocktail of antibodies, each 

targeting different epitopes of the antigen, may be designed simultaneously. A cocktail of 

therapeutic monoclonal antibodies might be more tolerant toward antigen mutations and show 

better efficacy than single monoclonal antibody. For example, ZMAb, a combination of 

multiple-neutralizing monoclonal antibodies that recognize three different areas of the Ebola 

envelope GP protein have been shown to be an effective strategy to improve survival of Ebola-

infected patients(Qiu et al. 2012).  

 In the present OptMAVEn guided antibody generation, the target epitope comprised eight 

contiguous amino acids. However, most B-cell epitopes(Haste Andersen et al. 2006) in nature 

consist of residues from different regions of the sequence and are discontinuous. The de novo 

antibody designs against discontinuous epitopes present additional challenges which will be 

tackled in future investigations using the OptMAVEn design strategy. The successful design for 

the linear epitope described herein, implies that the design methodology bears great promise for 

streamlining and greatly facilitating the development of high-affinity antibodies for a plethora 

antigens such as virus envelope proteins (e.g. HIV gp120(Pantophlet and Burton 2006)) and 

tumor-associated surface proteins (e.g. B-lymphocyte antigen CD20(Czuczman 2008)). 

CONCLUSIONS 

 We demonstrate here the successful application of a computational framework called 

OptMAVEn combined with molecular dynamics to de novo design antibodies against specific 

antigen-peptide target using reference system i.e. scFv-2D10, a peptide mimic of mannose-

containing carbohydrates. Among the five OptMAVEn de novo designed scFvs, three scFvs 

show nanomolar binding affinities to the dodecapeptide. These results reveal that OptMAVEn 

can efficiently de novo design thermally and conformationally stable antibodies with high 
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binding affinity to antigens and encourage the targeting of other antigen targets such as virus 

envelope proteins and tumor-associated surface proteins in the future. 
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FIGURE LEGENDS 

Fig. 1. Revised OptMAVEn strategy for de novo antibody design. (a) Antigen dodecapeptide 

(PDB 4H0H) (b) Step 1: sample antigen positions in a predefined antibody binding site. 

The binding site is represented by a rectangular box that covers all mean epitope 

coordinates by analyzing 750 antibody-antigen structures which are superimposed onto a 

reference antibody structure whose coordinate center of CDRs attachment points was 

placed at the origin. (c) Step 2: assign best V, (D) and J MAPs antibody modular 

parts (Pantazes and Maranas 2013) to assemble the germline antibody models against the 

dodecapeptide. (d) Step 3: refine the antibody-peptide conformation using molecular 

dynamics. (e) Step 4: select the favorable mutations in the antibody to improve the 

stability and binding to the dodecapeptide.  

Fig. 2. (a) Time evolution of the RMSD values during the 100 ns molecular dynamics of the 31 

antibody designs complexed with the dodecapeptide. (b)-(f) Snapshots of representative 

designed scFvs complexed with the dodecapeptide during simulations. (b) Antigen stably 

bound. The scFv remains stably bound to the dodecapeptide in the same binding pose 

during 100ns of simulation with an accompanying rearrangement of a few residues 

(shown in sticks) surrounding the dodecapeptide.  (c) Antigen relocation. The 

dodecapeptide relocates to a new binding pocket. (d) Antigen reorientation. The 

dodecapeptide remains in the same binding pocket but executes a significant orientation 

change. (e) Antigen partially bound. Parts of the dodecapeptide become unbound. (f) 

Antigen unbound. The dodecapeptide shifts out of the binding site.  (g) Flowchart of the 

selections of "Germline" antibodies using MD for further in silico affinity maturation. 

Fig. 3. Multiple sequence alignments of the five de novo designs and scFv-2D10 antibody. 

(a) H chain. (b) L chain. The alignments were performed with UGENE (Okonechnikov et 

al. 2012) and the Clustal X coloring scheme was used. FRs and CDRs regions are 

indicated on top of each alignment based on the IMGT numbering system.  

Fig. 4. Construction of de novo scFv for protein expression in E. coli. (a) Schematic 

representation of scFv gene construction. (b) Agarose gel analysis of PCR products of all 
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the scFvs in this study indicating amplified gBlock fragments. Lane M, DNA marker (1 

kb ladder); Lane 1, scFv-1; Lane 2, scFv-2; Lane 3, scFv-3; Lane 4, scFv-4; Lane 5, 

scFv-5; and Lane N, scFv-2D10. (c) Analysis of purified and refolded de novo designed 

scFvs on SDS-PAGE. Lane M, protein molecular weight markers; Lane 1, scFv-1; Lane 

2, scFv-2; Lane 3, scFv-3; Lane 4, scFv-4; Lane 5, scFv-5; Lane N, scFv-2D10. (d) Far 

UV CD spectra of refolded scFvs characterized in this study. The far-UV CD spectra of 

scFv proteins were recorded in wavelength range from 190 to 250 nm (x-axis) and are 

expressed as CD[mDeg] value, which represents the ellipticity (y-axis). The predicted 

(GOR4) and actual (CDSSTR and CONTIN of CDPro software) analysis were in 

agreement in having more β-sheets than α-helical content.  

Fig. 5.  Binding curves of de novo designed scFvs with dodecapeptide used to determine KD 

values via biolayer interferometry on the Octet QK System. All scFvs were His6-

tagged to load on Ni-NTA biosensors. (a) The sensogram shows the interaction of de 

novo designed scFvs (550 nM) binding to dodecapeptide (1000 nM) (b) Optimization of 

antigen concentrations, the sensogram shows the interaction of scFv-2 (550 nM) with 

different antigen concentrations (1000 nM, 300 nM, 100 nM, 30 nM, 10 nM, and 3 nM). 

(c) Optimization of scFv concentrations, the sensogram shows the interaction of antigen 

(30 nM) with different scFv-2 concentrations (1110 nM, 550 nM, 460 nM, 370 nM, 280 

nM, and 180 nM). (d) Each scFv (550 nM) of the current system titrated against 30 nM of 

the non-related antigen, GCN4 (e) Non-related scFv (550 nM) designed for yeast 

transcription factor, GCN4 (YHLENEVARLKK-C-BSA) (Zahnd et al. 2004) titrated 

against the dodecapeptide antigen (30 nM) in the present study (e) With the optimized 

antibody and antigen concentrations, the sensogram shows the interaction of de novo 

designed and 2D10 scFvs (550 nM) binding to dodecapeptide antigen (30 nM).  

Fig. 6. (a) Counts of amino acid mutation types before and after computational affinity 

maturation of the three successful designs: scFv-1, scFv-2, scFv-4. b. Amino acid 

propensities of the three successful designs. (c-e) Models of scFv-1, scFv-2 and scFv-4 

bound to dodecapeptide. Hydrogen bonds and cation-π interactions are shown in black 
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and magenta dashed lines, respectively. (f) Structure of scFv-2D10 bound to 

dodecapeptide (PDB 4H0H). 
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Table I. Summary of 31 best-designed "germline" antibodies ranked by interaction energy or 

RMSDs. 

Antibody
a
 

H chain L chain
b
 IE

c
 RMSD

d
 

V CDR3 J V CDR3 J   

120_10148_1 7 343 3 2 (K) 25 (K) 2 (K) -530  

120_10148_2 7 343 3 3 (K) 25 (K) 2 (K) -530  

160_8161_1 13 368 5 45 (K) 10 (K) 1 (K) -527  

140_10149_1 135 43 5 2 (K) 171 (K) 2 (K) -502  

140_10149_2 136 43 5 3 (K) 171(K) 2 (K) -502  

140_9977_4 116 126 5 32 (L) 14 (L) 1 (L) -488  

160_8161_2 13 270 5 45 (K) 10 (K) 1 (K) -483  

120_15439_1 39 124 1 9 (K) 19 (K) 3 (K) -481  

160_10005_1 13 62 5 2 (K) 6 (K) 5 (K) -480  

160_10005_2 13 62 5 3 (K) 6 (K) 5 (K) -480  

120_13389_2 30 207 1 45 (K) 86 (K) 3 (K) -478  

160_10175_1 13 43 5 9 (K) 85 (K) 2 (K) -468  

160_10162_1 13 43 5 2 (K) 2 (K) 3 (K) -467  

160_10162_2 13 43 5 3 (K) 2 (K) 3 (K) -467  

120_15439_2 39 124 1 48 (K) 19 (K) 3 (K) -467  

140_9976_1 120 126 5 31 (L) 14 (L) 1 (L) -465  

140_9976_2 120 126 5 32 (L) 14 (L) 1 (L) -464  

120_13389_2 30 207 1 45 (K) 145 (K) 3 (K) -458  

120_6290_1 12 207 5 45 (K) 10 (K) 1 (K) -456  

140_4402_1 12 257 5 31 (K) 33 (K) 1 (K) -455  

200_15222_5 137 283 1 45 (K) 158 (K) 3 (K)  2.9 

140_15899_5 59 43 3 16 (K) 81 (K) 4 (K)  3.0 

120_13234_5 97 212 1 45 (K) 30 (K) 1 (K)  3.2 

160_15235_1 87 283 1 45 (K) 25 (K) 1 (K)  3.4 

160_14896_1 133 283 1 45 (K) 25 (K) 1 (K)  3.6 

240_4115_2 135 30 5 44 (K) 6 (K) 5 (K)  3.6 

140_16152_1 13 7 5 9 (K) 15 (K) 1 (K)  3.6 

160_15235_2 77 283 1 45 (K) 25 (K) 1 (K)  3.7 

140_13234_5 116 207 1 45 (K) 30 (K) 5 (K)  3.7 

200_15729_2 20 283 4 48 (K) 3 (K) 5 (K)  3.9 

200_15222_2 133 283 1 45 (K) 158 (K) 3 (K)  4.0 
a
 Antibody is named based on the rotation angle and order during the antigen sampling in the 

antibody-binding site. 
b
 The number of V, CDR3 and J modular parts in the MAPs database. The MAPs database is 

composed of 929 “parts” that can be assembled to create 2.3 ×10
10

 unique antibodies which is in 

fact more antibodies than can be assembled by the human immune system through 

rearrangement of the V, D, and J gene (Pantazes and Maranas 2013). K and L in the parenthesis 

represent KAMPA and LAMBDA light chains, respectively. 
c
 MILP interaction energies. Unit in kcal/mol. 

d
 The RMSD between the docked and best-positioned antigen conformations. 
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Table II. Summary of energies and mutations of the five de novo designed scFvs against the 

dodecapeptide. 

Antibody Stage
a
 

Complex 

Energy
b
 

IE
c
 

Mutation count
d
 

H chain L chain 

 FR CDR FR CDR 

scFv-1 Before -6585 -43 23 

(10%) 

17  

(7%) 

24 

(10%) 

16  

(7%) 
 

After -11939 -474 

scFv-2 Before -8046 -37 
 

28  

(12%) 

16 

(7%) 

26 

(11%) 

19 

(8%) 
 

After -11629 -428 

scFv-3 Before -4712 -51 24 

(11%) 

16 

(7%) 

31 

(14%) 

13 

(6%) 
 

After -7168 -360 

scFv-4 Before -6602 -96 23 

 

(10%) 

21 

(9.4%) 

19 

(9%) 

20 

(9%) 
 

After -11110 -550 

scFv-5 Before -5708 -4.8 13 

(6%) 

12 

(5%) 

14 

(6%) 

11 

(5%) 
 

After 

 

-8704 

 

-225 

2D10
e
   

-3868 

 

-181 

6 

(3%)              

5 

(2%) 

1 

(1%) 

0 

(0%) 
a 
Before or after computational affinity maturation.   

b
 The entire complex energy. Unit in kcal/mol. 

c
 The interaction energy between the antibody and antigen using CHARMM force field. Unit in 

kcal/mol. 
d
 The number of mutations between the designed mature sequence and the "germline" sequence. 

The mutation frequency was calculated by (number of mutations)/(number of residues in scFv 

except for the linker). 
e
 The mutation count for scFv-2D10  is based on the germline gene assignment in IMGT.   
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Table III. Pairwise sequence similarity of the designed scFv and 2D10. Lower left and upper 

right triangular parts are the sequence identities of H and L chains, respectively. The sequence 

alignments were performed by BLAST (Altschul et al. 1990).  

 2D10 scFv-1 scFv-2 scFv-3 scFv-4 scFv-5 

2D10 1 56% 49% 47% 41% 57% 

scFv-1 43% 1 57% 52% 44% 54% 

scFv-2 36% 49% 1 46% 47% 47% 

scFv-3 38% 57% 49% 1 54% 45% 

scFv-4 32% 39% 48% 44% 1 43% 

scFv-5 46% 49% 46% 62% 41% 1 
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Table IV. Kinetic data for the binding of refolded de novo designed scFvs with the 

dodecapeptide obtained by Octet QK
a
. 

scFv Molar 

Conc 

[nM] 

kobs
b

 

x 

10
-3

 

[s
-1

] 

Error 

in 

kobs x 

10
-5

 

kd x 

10
-4

 

[s
-1

] 

Error 

in kd 

x 10
-5

 

ka
c
 x 

10
4
 

[M
-

1
s

-1
] 

Error 

in ka 

x 10
-5

 

KD
d
 

[nM] 

Error 

in KD  

[nM] 

scFv-1 30 3.3 1.3 7.6 1.2 8.6 1.8 8.9 2.3 

scFv-2 30 4.1 0.8 13.2 0.7 9.1 1.1 14.4 1.9 

scFv-4 30 3.9 1.1 17.1 1.3 7.2 1.7 23.8 5.8 

scFv-

2D10 

30 7.0 4.0 7.8 1.5 20.6 4.3 3.8 1.1 

a
 Errors are from model fitting. 

b
 kobs is the observed rate constant that reflects the overall rate of the combined association and 

dissociation of the two binding partners. 
c 
ka = (kobs – kd) / [Analyte]. 

d
 KD represents the ratio of the association rate constant (ka) to the dissociation rate constant (kd). 
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