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Abstract: Recent studies indicate that pretreating microorganisms with ribosome-targeting antibiotics may promote a transition in the 
microbial phenotype such as the formation of persister cells; i.e., those cells that survive antibiotic treatment by becoming metabolically 
dormant. In this work, we developed the first genome-scale modeling approach to systematically investigate the influence of ribosome-
targeting antibiotics on the metabolism of Pseudomonas aeruginosa. An approach for integrating gene expression data with metabolic 
networks was first developed to identify the metabolic reactions whose fluxes were positively correlated with gene activation levels. The 
fluxes of these reactions were further constrained via a flux balance analysis to mimic the inhibition of antibiotics on microbial metabolism. It 
was found that some of metabolic reactions with large flux change, including metabolic reactions for homoserine metabolism, the production 
of 2-heptyl-4-quinolone (HHQ) and isocitrate lyase, were confirmed by existing experimental data for their important role in promoting 
persister cell formation. Metabolites with large exchange-rate change, such as acetate, agmatine and oxoglutarate, were found important for 
persister cell formation in previous experiments. The predicted results on the flux change triggered by ribosome-targeting antibiotics can be 
used to generate hypotheses for future experimental design to combat antibiotic-resistant pathogens.  
Index term:  Computational modeling and simulations in biology; Systems biology; Flux balance analysis; Persiter cells 

1. Introduction: 
Although antibiotics are known for eliminating pathogens 

through a variety of mechanisms [1, 2], antibiotics may also promote 
the formation of persisters, which are dormant variants of regular 
cells that are highly tolerant to antibiotics [3]. For example, 
antibiotic pretreatment to E. coli including rifampicin, tetracycline, 
and carbonyl cyanide m-chlorophenyl hydrazine increased the 
microbial persistence dramatically by halting protein synthesis [4]. 
The presence of persister-specific tolerance is suggested to account 
for the recalcitrance of infectious diseases [5, 6]. It is thus important 
to study the mechanisms via which antibiotics cause pathogens to 
change their metabolism and form persister cells. In experimental 
studies, screening knockout libraries has not produced mutants that 
lack persisters, indicating that dormancy is not regulated by one 
single gene or enzyme [3, 7].  Although research has been conducted 
on the reaction-flux distribution upon the antibiotic treatment [8], no 
genome-scale modeling approach has been published to incorporate 
the interaction of multiple genes, enzymes and metabolites to 
investigate potential persister-forming mechanisms triggered by 
antibiotics. This motivates us to develop the first genome-scale 
modeling approach to quantify the effect of antibiotics on the 
metabolic flux redistribution, and thus investigate potential 
mechanisms for the persister formation that is triggered by 
antibiotics.  

 The enzyme-dependent reactions can be generally identified 
from the metabolic pathways according to the up-regulated genes in 
the experimental data. However, existing studies show that the 
correlation between mRNA or protein levels and metabolic fluxes 
levels is not necessarily high for all metabolic reactions [9, 10]. Kim 
et al., 2013 developed the first in silico approach to capture the 
relationship between mRNA levels and metabolic fluxes [9]. This 
approach, called flux-coupled genes, requires transcriptome and 
fluxome data under different conditions. Since fluxome data are 
mostly limited to the central carbon metabolism, this approach 
cannot be applied to metabolic pathways for other metabolisms in 
genome-scale models. The flux balance analysis (FBA) is one of the 
most commonly used approaches to quantify microbial growth under 
specific nutrient conditions from genome-scale models. On the basis 
of the FBA platform, several approaches, including GIMME[11], 
iMAT[12], MADE[13], E-FLUX[8], Lee-12[14], RELATCH[15], 
and GX-FBA[16], have been developed to integrate gene expression 
data with genome-scale models to predict metabolism. Most of these 
methods place tight constraints on metabolic fluxes from mRNA 
data so that the change in metabolic fluxes matches the change in 

mRNA levels. However, the performances of these methods are not 
as good as traditional FBA and Probabilistic Flux Balance 
Analysis (pFBA) [10, 17] in which no constraints from gene 
expression data were imposed to metabolic fluxes. One potential 
reason for this is that not all of reactions rates are enzyme-dependent, 
as some of them depend on the availability of reactants instead (i.e., 
substrate-dependent). In many cases, mRNA or protein levels in the 
same metabolic branch might engage alteration in opposite 
directions. Therefore, assigning a tight constraint or objective 
function to fit the fluxes to microarray data, as shown in the 
aforementioned approaches, might not exhibit good prediction 
capability. We hypothesize that adding a loose constraint to 
metabolic fluxes based upon gene expression data may return a 
better correlation between the metabolic fluxes and mRNA levels 
than FBA and pFBA. Hence, the reactions identified as 
mRNA/enzyme dependent were constrained here in a way that 
mimics the stress imposed by antibiotics to the bacteria. The 
reactions with large flux change and the metabolites with large 
exchange rates are determined to provide a systems-level 
investigation of potential persister formation mechanisms of P. 
aeruginosa. This pathogen was selected in this work, as it is one of 
the leading causes of nosocomial infections in hospitalized patients 
and it displays resistance to a wide array of antibiotics by forming a 
biofilm in chronic infectious processes [18, 19].  

2. METHOD 
2.1 An illustrative example of overall approach 

Gene expression data of microorganisms under the control 
condition and other experimental conditions were first obtained 
(Figure 1A). The changes in gene expression levels were used to 
constrain metabolic fluxes, which were then used to identify the 
metabolic reactions that mainly depend on the enzyme levels instead 
of the reactant/substrate levels. For example, it can be concluded 
from Figure 1A that the fluxes of Reaction 1 are positively 
correlated with the expression levels of Gene 1, while the fluxes of 
Reaction 2 are not correlated with Gene 2 expression levels. 
Reaction 2 may be substrate-dependent instead of enzyme-
dependent. Since substrates are constrained by mass balance, the 
fluxes of substrate-dependent reactions may be negatively 
correlative with gene express levels. 

The reactions whose fluxes are positively associated with gene 
expression levels were then further constrained with limited 
metabolic fluxes as shown in the RED color reactions in Figure 1B. 
This can mimic the inhibition of the antibiotics on the protein 
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synthesis, which can be reflected by the low activity levels of the 
metabolic reactions associated with these proteins/genes. For 
example, the flux through Reaction 1 is limited to a small value. On 
the other hand, the flux of Reaction 2 was not constrained as it is not 
positively correlated with the expression levels of Gene 2, that is, it 
may not be influenced by the antibiotics that inhibit the protein 
synthesis.  

The flux change of each metabolic reaction was further 
investigated. In particular, the flux distributions of each metabolic 
reaction before and after the treatment with antibiotics (i.e., the 
BLACK and RED curves shown in Figure 1B respectively) were 
compared to identify the reactions with the largest flux changes. On 
the basis of these reactions, we can further study how the antibiotic 
may change the microbial metabolism and possibly induce the 
persister pathogen formation.  

(B): Limited fluxes were constrained to those metabolic reactions whose fluxes 
are positively correlated with gene expression levels (e.g., reactions in RED 
color) to mimic the inhibition action of antibiotics on microbial metabolism. The 
flux change in individual reactions was quantified to identify those reactions 
indicating microbial metabolism transition. 
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(A): The correlation factor between reaction and gene expression levels was 
quantified. 

	
Figure 1, a schematic description of the proposed approach to quantify the 
metabolism alteration imposed by the treatment of antibiotics on pathogens 

2. 2 Detail of the developed approach  
The metabolic model for P. aeruginosa used in this work 

consists of 1056 metabolic genes, 1030 enzymes, and 1111 
metabolic reactions (Oberhardt et al., 2008 [20]). The COBRA 
toolbox developed by Dr. Palsson’s group at UCSD was used in this 
work to perform the flux balance analysis and sample feasible flux 
solutions [21, 22]. In order to mimic the stress imposed by 
ribosome-targeting antibiotics on microbial metabolism, the gene 
expression data was used to identify metabolic reactions whose 
fluxes are highly correlated with gene expression levels via the 
following steps: 

Step 1: The lower bound of the Reaction i flux was constrained 
as shown in Equation (1) in the flux balance analysis if the gene 
associated with Reaction i was up-regulated. On the contrary, the 
upper bound was constrained (shown in Equation (2)) if the gene 
was down-regulated.  

lbi = vmeanc×Ci×N                                      (1) 
ubi = vmean×Ci×N                                       (2) 

where vmean is the mean value of reaction fluxes sampled for the 
control condition (e.g., antibiotics were not used).  Ci is the ratio of 
the gene expression levels between the new experimental condition 
and the control condition. If multiple genes are involved in one 
metabolic reaction, Ci is set to the geometric mean of the expression-
level ratios for those genes. N is the minimal integer that guarantees 
the model-predicted growth rate is not less than 90% of the 
experimental growth rate.  

Step 2: The flux change of Reaction i was defined by the 
difference between the fluxes of new and control conditions. The 
flux change was finally normalized by the mean flux value for the 

control condition, represented by ΔFi in Equation (3). Similarly, the 
normalized gene expression change ΔGi was calculated. The 
correlation factor θi between the metabolic flux and the gene 
expression level was defined by the ratio of ΔFi over ΔGi as shown 
in Equation (3). If gene expression data was obtained for multiple 
time points, the final θi represents the average value. Since some 
reaction rates were more substrate dependent (i.e., constrained by 
up/down stream reactions) than enzyme dependent, the correlation 
factor θi for these reactions might be negative. In this case, a zero 
value was set to θi to waive any constraint on the flux of Reaction i. 
On the other hand, if θi was larger than one, θi was set to one so that 
a maximum constraint was applied to the flux of Reaction i.  

i

i
i G

Fθ
D
D

=                                           (3) 

The correlation factor θi was then integrated into flux balance 
analysis to constrain the upper bounds of metabolic reactions to 
mimic the inhibition effect from the antibiotics on microbial 
metabolism (as shown in Equation (4)). For antibiotics that halt 
protein synthesis, it was assumed that the synthesis of all enzymes 
was inhibited equally 90%, as antibiotics generally are not able to 
completely inhibit enzyme levels. Additionally, other inhibition 
percentages were also tested, and the results were similar in general.  

ubi = vmean -90%× vmean ×θi                               (4) 

3. RESULTS 
3.1 Determination of correlation factor between gene 
expression levels and metabolic fluxes by integrating gene 
expression data into the metabolic network 

In order to test the performance of our approach for integrating 
gene expression data into metabolic models, the fluxomics dataset 
obtained by C13–labeling in Ishii et al., 2007 [23] was utilized as the 
experimental data. In addition, our approach was compared with 
pFBA and FBA (Figure 2), as these two methods have been 
approved to predict higher correlation between metabolic fluxes and 
gene express levels than other aforementioned existing approaches. 
The experimental data was obtained with different dilution rates: 0.1 
h-1, 0.4 h-1, 0.5 h-1 and 0.7 h-1. The 0.1 h-1 condition was treated as 
the control. As shown in Figure 2(a), the prediction by our approach 
for the 0.4 h-1 dilution rate generated a correlation factor R of 0.81, 
which is higher than 0.75 and 0.76 predicted from FBA and pFBA, 
respectively. For the data obtained with the 0.5 h-1 dilution rate, our 
approach generated R equal to 0.75, while R for pFBA and  FBA are 
0.71 and 0.70, respectively. Our approach remained the best for the 
0.7 h-1 dilution rate (R equal to 0.75), while pFBA outperformed 
FBA again (R equal to 0.73 versus 0.72).  

 
Figure 2, Prediction of the intracellular fluxes from the gene expression data 
measured at (A) 0.4 h-1 dilution rate, (B) 0.5 h-1 dilution rate, (C) 0.7 h-1 
dilution rate. The X axis shows the measured fluxes, while the Y axis 
represents the predicted fluxes through individual reactions of the central 
carbon metabolism.                                                                      
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Among the 28 intracellular reactions in central carbon 
metabolism, 18 reactions demonstrated a positive correlation in their 
fluxes to the expression levels of their corresponding genes. 
Meanwhile, the rate limiting steps in central carbon metabolism 
have large positive correlation with their genes. For example, the 
reaction in which isocitrate is converted to 2-oxoglutarate is the rate 
limiting step in the TCA cycle. Its correlation factor was predicted to 
be 0.95 according to our approach, and 0.79 according to fluxomics 
data. Other rate limiting enzymes such as pyruvate kinase and α-
ketoglutarate dehydrogenase were inferred to have a strong 
correlation between reaction rate and gene expression level by both 
our approach and the fluxomics data. This also indicates a good 
prediction ability of our approach.  

3.2 Investigating the metabolic alteration of P. aeruginosa 
upon the treatment of ribosome targeted antibiotics 

Our approach was applied to the microarray data presented in 
Dötsch et al., 2012 [24] to determine the metabolic reactions that are 
positively correlated with the gene expression levels in P. 
aeruginosa. In particular, gene expression data of P. aeruginosa at 
multiple time points (4h, 12h, 24h and 48h, 4h as control) in 
planktonic growth and biofilm formation was used to determine the 
correlation factors between gene expression levels and reaction rates. 
Expression patterns of metabolic genes were extracted and then 
integrated with the metabolic model for P. aeruginosa. Results 
revealed that 112 reactions out of all 1110 reactions are associated 
with positive correlation factors. As mentioned above, the activities 
of reactions depend on both the enzyme levels and the reactant (or 
substrate) availability. The latter is constrained by the topology of 
the metabolic network. The reactions with higher correlation factors 
are more enzyme-dependent, while the reactions with lower 
correlation factors are more substrate-dependent or network-
dependent. Thus the reactions with higher correlation factors should 
be more sensitive to the ribosome-targeted antibiotics.   

3.2.1 Investigation of the metabolic flux alteration after the 
treatment of antibiotics  

The obtained correlation factors were applied to constrain 
metabolic fluxes as shown in Figure 1B to predict the metabolism 
variation. It turned out that 10 reversible reactions changed their flux 
directions, 171 reactions increased their fluxes, 372 reactions had 
decreased flux values, and 558 reactions did not change their fluxes. 
Figure 3 shows the distribution of flux variation among different 
metabolic pathways. The categories of metabolic pathways were 
defined by Oberhardt et al., 2008 [20]. Some of the metabolic 
pathways with large flux change have been found important by 
experiment for the persister cell formation of P. aeruginosa. These 
metabolic pathways will be discussed in detail in next subsections.  

 
 

 

 

 

 

 

 

 

 

 

Figure 3, the flux change of metabolic reactions for metabolisms of P. 
aeruginosa upon the treatment of antibiotics.  

3.2.2 Some metabolic pathways with large flux change were 
found to be important for persister cell formation in 
experiment 

Some of the reactions with large flux change were found to be 
involved in persister cell formation and the antibiotic resistance of P. 
aeruginosa. These reactions were mainly related to the homoserine 
metabolism, the production of 2-heptyl-4-quinolone (HHQ), 
isocitrate lyase and indole derivatives, and exchange reactions of 
some extracellular components. The detail of these reactions was 
given in this section.  
3.2.2.1 Homoserine metabolism engages in the metabolism 
adjustment upon the treatment of antibiotics  

Acyl-homoserine-lactone behaves as a quorum-sensing 
molecule and triggers persister cell formation in P. aeruginosa [25]. 
Our approach predicted the flux change in the homoserine 
metabolism that was consistent with this observation. Figure 4 
illustrated the change of fluxes in the metabolic reactions for the 
synthesis of L-Homocysteine. Specifically, the fluxes of the 
synthesis reactions for L-Threonine and L-Homocysteine were 
enhanced, while the synthesis rate of L-Cystathinonine was 
decreased. L-Homocysteine is a precursor of acyl-homoserine-
lactone, as it leads to the synthesis of S-adenosylmethionine, a 
reactant for acyl-homoserine-lactone synthesis. According to the 
FBA results, the enhanced L-Homocysteine synthesis results in the 
enhancement of the acyl-homoserine-lactone. This provides a 
possible explanation for the presence of antibiotics triggering the 
formation of P. aeruginosa persister cells.  

L-Homoserine

L-Aspartate 4-semialdehyde

Homoserine lactone

O-phospho-L-homoserine

L-threonine

O-acetyl-L-homoserine O-succinyl-L-homoserine

L-cystathinone L-homocysteine

Note:
Reactions with increased fluxes 

Reactions with decreased fluxes 

Reactions with unchanged fluxes 

Figure 4, Flux adjustment of the homoserine metabolism upon the treatment 
of antibiotics 
 
3.2.2.2 Alteration of the production rate of 2-heptyl-4-
quinolone (HHQ), isocitrate lyase, and indole derivatives 
upon the treatment of antibiotics  

Wei et al., 2011, reported that 2-heptyl-3-hydroxy-4-quinolone 
(PQS) production was strongly reduced in persister strains PAO-
SCV [26]. The production rates of HHQ and PQS were predicted to 
be down-regulated to 0.0559 of their nominal values, which is 
consistent with the data shown in Wei et al., 2011. 

It has been suggested that the persistence of Mycobacterium 
tuberculosis, which shares orthologous genes for energy production 
and conversion with P. aeruginosa [27], requires the elevation of the 
intracellular level of isocitrate lyase, which is a key anaplerotic 
enzyme for the glyoxylate bypass [28]. Our results showed that the 
flux of the reaction catalyzed by isocitrate lyase was enhanced to 
5.89 fold of its nominal value upon the treatment of ribosome-
targeting antibiotics such as rifampicin. In addition to this enzyme, 
enzymes acetyl-CoA C-acetyltransferase and putrescine 
aminotransferase were found to be positively related to the persister 
cell formation of  P. aeruginosa  [29]. Our results indicated that the 
fluxes of the reactions catalyzed by these enzymes were increased 
by 1.26 and 1.28 folds of their nominal values. 

Vega et al., 2012, showed that the indole signaling inoculated E. 
coli population against antibiotics by activating the stress response 
and leading to the persister formation [30]. Although indole is not 
within the network of P. aeruginosa, its derivatives are incorporated 
into the tryptophan side chain pathway of the model. Our results 
showed that the flux of tryptophan-synthase reaction in tryptophan 
metabolism increased 7.1 fold upon the treatment of antibiotics.  
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3.2.2.3 Change of exchange reaction fluxes for extracellular 
components  

The flux change in the exchange reactions was further analyzed, 
and Figure 5 showed the metabolites whose exchange rates were 
significantly increased compared to the control condition. Some of 
them are related to microbial persister formation. For instance, 
acetate enhances protein aggregation and the generation of persisters 
[31]. The data of Figure 5 indicate that the exchange rate of acetate 
increased more than 9 fold in P. aeruginosa upon addition of 
antibiotics. Agmatine was reported to induce antibiotic resistance 
[32], and our results showed an increase in production of agmatine 
after antibiotics treatment. Ma et al., 2010, demonstrated that 
oxoglutarate metabolism was important for antibiotic tolerance in E. 
coli showing that a sucB mutant deficient in 2-oxoglutarate 
dehydrogenase complex had decreased viability when exposed to 
antibiotics [33]. Our results support this result since the exchange 
rate of oxoglutarate was significantly enhanced. Amato et al., 2013, 
demonstrated that the switch from glucose to fumarate promoted 
persister cell formation of E. coli [34]. This is shown in our results 
as there was an increased in fumarate exchange rate. Cava et al., 
2011, demonstrated that D-alanine was able to inhibit the spore 
germination [35]. Our results about D-alanine support the finding.  

 
 
 
 
 
 
 
 
 
 
 

Figure 5, metabolites which the exchange rates are significantly increased 
after antibiotic treatment 

4. Conclusions 
In this paper we developed a systems biology approach to 

investigate the perturbation of microbial metabolism of P. 
aeruginosa upon the treatment of ribosome-targeting antibiotics. 
Metabolic fluxes depend on both enzyme activation level and 
reactant availability. The core idea of mimicking the stress imposed 
by ribosome-targeting antibiotics was to constrain the fluxes of 
enzyme-dependent reactions. This novel approach is capable of 
uncovering the correlation factors between metabolic fluxes with 
gene expression levels. The results indicate that our approach 
outperformed FBA and pFBA by obtaining higher correlation 
factors with the experimental data. Additionally, fluxes of the 
reactions that were highly correlated with gene expression levels and 
were constrained to predict the perturbation of microbial metabolism 
upon the treatment of antibiotics. Different change regimes were 
discovered in which some were already validated by experimental 
results on their important role in persister cell formation. The 
exchange rates of several metabolites with significant alteration 
were also studied, which provides candidate metabolites in further 
controlling persister formation via nutrition supplement. This 
approach can be applied to study the metabolism adjustments in 
phenotype transition of other microorganism given metabolic 
network information.  

References: 
1.	 Kohanski,	M.A.,	D.J.	Dwyer,	and	J.J.	Collins,	How	antibiotics	kill	bacteria:	from	

targets	to	networks.	Nat	Rev	Microbiol,	2010.	8(6):	p.	423-35.	
2.	 Kohanski,	M.A.,	et	al.,	A	common	mechanism	of	cellular	death	induced	by	

bactericidal	antibiotics.	Cell,	2007.	130(5):	p.	797-810.	

3.	 Lewis,	K.,	Persister	cells.	Annu	Rev	Microbiol,	2010.	64:	p.	357-72.	
4.	 Kwan,	B.W.,	et	al.,	Arrested	protein	synthesis	increases	persister-like	cell	formation.	

Antimicrob	Agents	Chemother,	2013.	57(3):	p.	1468-73.	
5.	 Spoering,	A.L.	and	K.	Lewis,	Biofilms	and	planktonic	cells	of	Pseudomonas	

aeruginosa	have	similar	resistance	to	killing	by	antimicrobials.	J	Bacteriol,	2001.	
183(23):	p.	6746-51.	

6.	 Barry,	C.E.,	3rd,	et	al.,	The	spectrum	of	latent	tuberculosis:	rethinking	the	biology	
and	intervention	strategies.	Nat	Rev	Microbiol,	2009.	7(12):	p.	845-55.	

7.	 Hu,	Y.	and	A.R.	Coates,	Transposon	mutagenesis	identifies	genes	which	control	
antimicrobial	drug	tolerance	in	stationary-phase	Escherichia	coli.	FEMS	Microbiol	
Lett,	2005.	243(1):	p.	117-24.	

8.	 Colijn,	C.,	et	al.,	Interpreting	expression	data	with	metabolic	flux	models:	predicting	
Mycobacterium	tuberculosis	mycolic	acid	production.	PLoS	Comput	Biol,	2009.	5(8):	
p.	e1000489.	

9.	 Kim,	H.U.,	W.J.	Kim,	and	S.Y.	Lee,	Flux-coupled	genes	and	their	use	in	metabolic	flux	
analysis.	Biotechnol	J,	2013.	8(9):	p.	1035-42.	

10.	Machado,	D.	and	M.	Herrgard,	Systematic	evaluation	of	methods	for	integration	of	
transcriptomic	data	into	constraint-based	models	of	metabolism.	PLoS	Comput	Biol,	
2014.	10(4):	p.	e1003580.	

11.	Becker,	S.A.	and	B.O.	Palsson,	Context-specific	metabolic	networks	are	consistent	
with	experiments.	PLoS	Comput	Biol,	2008.	4(5):	p.	e1000082.	

12.	Zur,	H.,	E.	Ruppin,	and	T.	Shlomi,	iMAT:	an	integrative	metabolic	analysis	tool.	
Bioinformatics,	2010.	26(24):	p.	3140-2.	

13.	Jensen,	P.A.	and	J.A.	Papin,	Functional	integration	of	a	metabolic	network	model	
and	expression	data	without	arbitrary	thresholding.	Bioinformatics,	2011.	27(4):	p.	
541-7.	

14.	Lee,	D.,	et	al.,	Improving	metabolic	flux	predictions	using	absolute	gene	expression	
data.	BMC	Syst	Biol,	2012.	6:	p.	73.	

15.	Kim,	J.	and	J.L.	Reed,	RELATCH:	relative	optimality	in	metabolic	networks	explains	
robust	metabolic	and	regulatory	responses	to	perturbations.	Genome	Biol,	2012.	
13(9):	p.	R78.	

16.	Navid,	A.	and	E.	Almaas,	Genome-level	transcription	data	of	Yersinia	pestis	analyzed	
with	a	new	metabolic	constraint-based	approach.	BMC	Syst	Biol,	2012.	6:	p.	150.	

17.	Lewis,	N.E.,	et	al.,	Omic	data	from	evolved	E.	coli	are	consistent	with	computed	
optimal	growth	from	genome-scale	models.	Mol	Syst	Biol,	2010.	6:	p.	390.	

18.	Oberhardt,	M.A.,	et	al.,	Metabolic	network	analysis	of	Pseudomonas	aeruginosa	
during	chronic	cystic	fibrosis	lung	infection.	J	Bacteriol,	2010.	192(20):	p.	5534-48.	

19.	Cao,	B.,	et	al.,	Risk	factors	and	clinical	outcomes	of	nosocomial	multi-drug	resistant	
Pseudomonas	aeruginosa	infections.	J	Hosp	Infect,	2004.	57(2):	p.	112-8.	

20.	Oberhardt,	M.A.,	et	al.,	Genome-scale	metabolic	network	analysis	of	the	
opportunistic	pathogen	Pseudomonas	aeruginosa	PAO1.	J	Bacteriol,	2008.	190(8):	p.	
2790-803.	

21.	Becker,	S.A.,	et	al.,	Quantitative	prediction	of	cellular	metabolism	with	constraint-
based	models:	the	COBRA	Toolbox.	Nat	Protoc,	2007.	2(3):	p.	727-38.	

22.	Schellenberger,	J.	and	B.O.	Palsson,	Use	of	randomized	sampling	for	analysis	of	
metabolic	networks.	J	Biol	Chem,	2009.	284(9):	p.	5457-61.	

23.	Ishii,	N.,	et	al.,	Multiple	high-throughput	analyses	monitor	the	response	of	E.	coli	to	
perturbations.	Science,	2007.	316(5824):	p.	593-7.	

24.	Dotsch,	A.,	et	al.,	The	Pseudomonas	aeruginosa	transcriptome	in	planktonic	cultures	
and	static	biofilms	using	RNA	sequencing.	PLoS	One,	2012.	7(2):	p.	e31092.	

25.	Moker,	N.,	C.R.	Dean,	and	J.	Tao,	Pseudomonas	aeruginosa	increases	formation	of	
multidrug-tolerant	persister	cells	in	response	to	quorum-sensing	signaling	molecules.	
J	Bacteriol,	2010.	192(7):	p.	1946-55.	

26.	Wei,	Q.,	et	al.,	Phenotypic	and	genome-wide	analysis	of	an	antibiotic-resistant	small	
colony	variant	(SCV)	of	Pseudomonas	aeruginosa.	PLoS	One,	2011.	6(12):	p.	e29276.	

27.	Fu,	L.M.	and	C.S.	Fu-Liu,	Is	Mycobacterium	tuberculosis	a	closer	relative	to	Gram-
positive	or	Gram-negative	bacterial	pathogens?	Tuberculosis,	2002.	82(2-3):	p.	85-
90.	

28.	Mukhopadhyay,	B.	and	E.	Purwantini,	Pyruvate	carboxylase	from	Mycobacterium	
smegmatis:	stabilization,	rapid	purification,	molecular	and	biochemical	
characterization	and	regulation	of	the	cellular	level.	Biochim	Biophys	Acta,	2000.	
1475(3):	p.	191-206.	

29.	De	Groote,	V.N.,	et	al.,	Novel	persistence	genes	in	Pseudomonas	aeruginosa	
identified	by	high-throughput	screening.	FEMS	Microbiol	Lett,	2009.	297(1):	p.	73-9.	

30.	Vega,	N.M.,	et	al.,	Signaling-mediated	bacterial	persister	formation.	Nat	Chem	Biol,	
2012.	8(5):	p.	431-3.	

31.	Vazquez-Laslop,	N.,	H.	Lee,	and	A.A.	Neyfakh,	Increased	persistence	in	Escherichia	
coli	caused	by	controlled	expression	of	toxins	or	other	unrelated	proteins.	J	Bacteriol,	
2006.	188(10):	p.	3494-7.	

32.	Kwon,	D.H.	and	C.D.	Lu,	Polyamines	induce	resistance	to	cationic	peptide,	
aminoglycoside,	and	quinolone	antibiotics	in	Pseudomonas	aeruginosa	PAO1.	
Antimicrob	Agents	Chemother,	2006.	50(5):	p.	1615-22.	

33.	Ma,	C.,	et	al.,	Energy	production	genes	sucB	and	ubiF	are	involved	in	persister	
survival	and	tolerance	to	multiple	antibiotics	and	stresses	in	Escherichia	coli.	FEMS	
Microbiol	Lett,	2010.	303(1):	p.	33-40.	

34.	Amato,	S.M.,	M.A.	Orman,	and	M.P.	Brynildsen,	Metabolic	control	of	persister	
formation	in	Escherichia	coli.	Mol	Cell,	2013.	50(4):	p.	475-87.	

35.	Cava,	F.,	et	al.,	Emerging	knowledge	of	regulatory	roles	of	D-amino	acids	in	bacteria.	
Cell	Mol	Life	Sci,	2011.	68(5):	p.	817-31.	


