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Abstract 

Bacteria are associated with the human body and colonize the gut, skin, and mucous membranes. 

These associations can be either symbiotic or pathogenic. In either case, bacteria derive more 

benefit from their host. The ability of bacteria to enter and survive within the human body can be 

exploited for human benefit. They can be used as a vehicle for delivering or producing bioactive 

molecules, such as toxins and lytic enzymes, and eventually for killing tumor cells. Clostridium 

and Salmonella have been shown to infect and survive within the human body, including in tumors. 

There is a need to develop genetic circuits, which enable bacterial cells to carry out the following 

activities: (i) escape the human immune system, (ii) invade tumors, (iii) multiply within the 

tumorous cells, (iv) produce toxins via quorum sensing at low cell densities, and (v) express suicide 
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genes to undergo cell death or cell lysis after the tumor has been lysed. Thus, bacteria have the 

potential to be exploited as anticancer agents. 

 

Keywords: Cancer; Clostridium; quorum sensing; Salmonella; tumors
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1. Introduction 

Cancers manifest the disruption of cell growth by genetic predispositions (oncogenes and 

genes responsible for DNA repair, apoptosis, and tumor suppression) and environmental factors, 

including exposure to the dangerous chemicals present in tobacco smoke and ionizing radiation 

[1-3]. Human cancers represent genetic disorders of somatic cells, which are marked by several 

abnormalities. Autosomal genetic predispositions lead to a high risk of cancer; furthermore, 

approximately 7% of all human cancers are hereditary [4]. Individuals who have genetic alterations 

in p53, BRCA1, and BRCA2 also exhibit a reduced ability to suppress the growth of cancer cells 

[5]. The rate of cancer occurrence is predicted to increase to 23.6 million cases within the next 

decade [6]. However, in the United States, the death rate due to cancer has dropped continuously 

over the past two decades due to increased public awareness [7, 

https://seer.cancer.gov/report_to_nation/statistics.html].  

Despite continuous global research efforts, cancer therapies continue to rely on a combination 

of surgery, radiotherapy, chemotherapy, hormones, and immunological methods [6]. Cancer 

therapies often involve disease management with severe side effects, including drug resistance, 

the capacity to repair DNA defects, and their drug detoxifying potential that interferes with 

apoptosis [8]. Although gene therapy seems to be the most promising [9], the use of toxins, 

immunogens, cytokines, or enzymes as anticancer agents appears to be the more commonly used 

strategies [10]. Consequently, diverse biological gene delivery vehicles based on viruses and 

bacteria have been developed [6,11-13]. In this article, the potential opportunities and challenges 

of exploiting tumor-specific bacteria have been presented to treat cancer.  

 

2. Bacteria used to target tumors  
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Human tumors are characterized by hypoxic, apoptotic, or quiescent physiological conditions, 

which prevent easy access to conventional drugs. Radiation therapy, which depends upon oxygen 

radicals to induce DNA damage, is rendered ineffective by the anaerobic conditions that prevail 

within tumors [14,15]. Early evidence of cancer patients exhibiting temporary recovery after 

bacterial infections dates back to 1867 [12]. Researchers developing strategies to circumvent these 

challenges have been fascinated by the bacterial ability to populate the human body and grow 

anaerobically, including tumors [16-19] (Fig. 1). Possible mechanisms for controlling bacterial 

accumulation in tumors include (i) entrapment in vasculature, (ii) entrance into tumors after an 

inflammatory reaction, (iii) chemotactic attraction towards compounds explicitly produced by 

tumors, (iv) growth in tumor-specific physiological conditions, and (v) protection from the 

immune system [17]. Since cancer patients are immunocompromised, the tumor environment is 

conducive for the growth of bacteria that would otherwise be eliminated by macrophages and 

neutrophils [20]. Concerted studies have revealed bacteria that could be used as anticancer agents 

[13,21-23] (Table 1 and Fig. 2).  

 

2.1. Clostridium  

Clostridium spp., C. novyi, and C. sordellii, being anaerobic and highly motile, can spread 

rapidly and extensively within the poorly vascularized tumor areas [14]. The spores of genetically 

engineered C. novyi-NT germinated well within the avascular regions of the tumors and effectively 

eradicated tumors in mice [24,25]. Genetically modified, C. novyi-NT is non-toxic. It can produce 

redox proteins during sporulation and secrete lipases even in a vegetative state. This feature allows 

the bacteria to survive exclusively in tumors [14,26]. Furthermore, C. novyi has been reported to 
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cause immunogenic tumor cell death by producing reactive oxygen species (ROS) [27]. C. novyi-

NT is a critical potential bacterial therapeutic agent [24,28].  

 

2.2. Salmonella 

Salmonella spp., especially the S. typhimurium strain VNP20009, selectively invades tumor 

tissues in mice, resulting in dramatic tumor reduction or elimination [29-35]. Salmonella spp. are 

attracted to tumors by serine, aspartate, and ribose, and can thrive in the presence of nutrients 

derived from dying tumor cells, as seen in animal models [32,36,37]. S. enterica has endogenous 

promoters, pflE, and ansB, explicitly activated in a human PC3 prostate tumor and tumor-free nude 

mice [38]. Although colonization by Salmonella at low cell densities does not exhibit any intrinsic 

tumor cell toxicity in vitro, it has been shown to cause tumor apoptosis in vitro and in vivo by 

using a red fluorescent dye bound to caspase-3 [39-41]. Furthermore, Salmonella spp. colonization 

in tumors elicits an immunological response, whereby the influx of blood into tumors increases 

the concentration of tumor necrosis factor- (TNF), which could interfere with antitumor 

activity. The attenuated Salmonella strain, msbB, was found to have TNF levels of approximately 

10% [37]. This feature can be regarded as a significant advancement in the safe administration of 

these bacteria in humans.  

Attenuated S. typhimurium has also been used as an agent for delivering the expression vector 

pSNhTS, which carries the activator of caspases (Smac) and tumor necrosis factor-related 

apoptosis-inducing ligand (TRAIL) genes, which are regulated by the hTERT promoter. Smac 

increases TRAIL-induced apoptosis, while the hTERT promoter effectively permits the expression 

of specific genes in tumor cells, restricting tumor growth by up to 90% [42]. Genetically modified 

Salmonella expressing the murine cytokine interleukin (IL)-4 or IL-18 genes significantly 
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increased survival time in preclinical mouse cancer models, thus offering a safe and effective 

alternative to the systemic use of bioactive compounds [43-45]. The bacteria could inhibit 

pulmonary metastases, and the growth of primary subcutaneous tumors in immune-competent 

mice challenged with syngeneic multi-drug-resistant carcinoma cell line clones. These activities 

were attributed to (i) natural killer (NK) cells and T-lymphocyte accumulation; (ii) heavy 

granulocyte infiltration; and (iii) increased intra-tumoral cytokine production [46]. Mice were 

administered attenuated Salmonella typhimurium (SalpIL2), lacking the gene coding for human 

IL-2 (Sal-NG) to prevent the relapse of pulmonary metastases in osteosarcoma. A significant 

reduction in pulmonary metastases was recorded, with killer cell populations increasing by 3.96-

fold due to SalpIL2 and 4.2-fold due to Sal-NG [47]. When co-cultured with colon carcinoma or 

melanoma cells, Salmonella transposon insertion mutants revealed that the bacterial genes adiY, 

yohJ, STM1787, STM1791, and STM1793 could activate cancerous cells. A Salmonella strain 

regulated by the STM1787 promoter expressed luciferase and exhibited tumor-induced 

bioluminescence. The toxin gene expressed by the STM1787 promoter proved to be a selective 

antitumor agent [48]. Genetically engineered S. typhimurium strain A1-R-GFP was helpful against 

metastatic human cancers such as glioma, fibrosarcoma, and osteosarcoma in the nude-mouse 

model [49]. 

 

2.3. Bifidobacterium 

Systematic screening of Bifidobacterium species was carried out to extend the limits of 

efficiency of chemotherapeutic agents. It revealed that intravenously injected B. longum precisely 

invaded and grew vigorously within the mice tumors [50]. Since the bacterium targets an anaerobic 

environment rather than tumor-specific receptors, it can reach solid tumors in different tissues and 

Jo
ur

na
l P

re
-p

ro
of



7 

sites [51,52]. Bifidobacterium bifidum surfaces conjugated with folic acids enabled them to bind 

to their respective tumor receptors and acted as a vehicle to carry semiconductor nanocrystals or 

quantum dots deep into tumor tissues [53]. Using a similar approach, Bifidobacterium breve and 

Clostridium difficile were designed as delivery systems to administer nanorods for imaging and 

for tumor ablation [54]. The therapeutic effect of recombinant B. breve expressing IL-24 in head 

and neck tumor xenografts was observed in mice. It was found to increase the inhibition of tumor 

growth and the induction of apoptosis [55]. Despite the complexities of genetically modifying 

Bifidobacterium, a unique Bifidobacteria Expression SysTem (BEST) has been developed, which 

allows the production and delivery of heterologous proteins to mucosal surfaces. Its function was 

validated by cloning murine IL-10, achieving seven-fold higher levels of IL-10 secretion [56]. A 

newer technique, using high-intensity focused ultrasound (HIFU) for the non-invasive destruction 

of cancerous cells, was limited by energy retention at low concentrations and short durations. The 

therapeutic efficiency of HIFU synergy was enhanced using lipid nanoparticles attached to 

Bifidobacterium by electrostatic adsorption [52]. 

Bacteria can be used as carriers for therapeutic agents targeting primary tumors and metastasis 

[57-60]. Since the formation of fresh blood vessels (angiogenesis) is necessary for the growth and 

metastasis of solid tumors, blocking this process has been envisaged as a good strategy to treat 

solid tumors. An attenuated auxotrophic strain of Salmonella and recombinant human endostatin 

(rhEndostatin) could significantly reduce the growth of murine malignant melanoma [61]. 

Endostatin produced by B. adolescentis and TRAIL can strongly inhibit angiogenesis and tumor 

growth [62,63]. Treatment of vesicular endothelial growth factor receptor 2 (VEGFR-2) in animal 

models of lung cancer, colorectal carcinoma, and malignant melanoma by using oral 

antiangiogenic bacterial vaccines was reported to be effective [64,65]. 
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2.4. Escherichia 

Monitoring the entry and location of E. coli and three attenuated pathogens (Listeria 

monocytogenes, S. typhimurium, and Vibrio cholerae) in live animal tumors by using GFP and 

luciferase luminescence revealed exciting results. It showed that conditions considered necessary 

were not critical for intra-tumoral replication and tumor specificity: (i) anaerobic growth 

conditions, (ii) the vaccinia virus lacking the gene coding for thymidine kinase, and (iii) 

auxotrophic mutations [57]. E. coli, expressing a model tumor antigen and listeriolysin-O (LLO), 

exhibited strong antitumor activity, which was attributed to the induction of cytotoxic T-

lymphocytes and the restriction of Foxp3 T-regulatory cells. Escherichia coli induced a strong 

antitumor effect against WT1-expressing tumors by co-expressing LLO and Wilms tumor gene 1 

(WT1), a clinically relevant tumor antigen associated with most adult leukemias,  Injecting the 

NAPYLPSCL peptide with E. coli-LLO also exhibited antitumor effects, indicating the potential 

of E. coli-LLO as a vaccine [66]. The anticancer properties of E. coli K-12 and DH5α have been 

evaluated as they can be easily genetically modified [41]. 

 

2.5. Actinobacteria 

Investigation of the bioactive molecules salinosporomide produced by the Actinomycetes 

Sinomonas humi strain MUSC 117T, Monashia flava strain MUSC 78T, and Microbacterium 

mangrovi strain MUSC 115T revealed their anticancer properties against human cervical 

carcinoma cell lines (Ca Ski) and human colon cancer cell lines (HT-29) [67]. The chemical 

profiles of the bioactive compounds {19} and {21} were similar to those reported for myxobacteria 

Stigmatella [68]. Pyrrolo[1,2-a]pyrazine-1,4-dione,hexahydro-3-(phenylmethyl)- {16}, produced 

by the S. humi strain MUSC 117T, also reduced the expression of the serine/threonine kinase Akt. 
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It inhibits the proliferation of cells and promotes apoptosis in tumors [69-71]. Streptomyces spp. - 

S. antibioticus and S. canaries produce saphenamycin, which has an IC50 of 0.6 μg/mL in 

CCRF/CEM T cell leukemia cells [72]. Saphenamycin was also found to extend the lives of mice 

with leukemia cell implants [73]. 

 

2.6. Listeria 

Attenuated L. monocytogenes (LM)-based vaccines have demonstrated efficacy against 

established B16F10 melanomas and metastatic breast cancer [74]. LM-expressing truncated LLO 

and amino acid fragments of tumor-associated antigens (TAA) have been shown to cause tumor 

cell death via high ROS levels [75]. The activation of CD8 T cells by Listeria-derived antigens 

significantly reduced metastases at a young age [76]. The highly attenuated Listeria vector, 

LmddA, which expresses a chimeric human Her2/neu (ChHer2) gene, effectively reduced immune 

tolerance, whereas the highly attenuated construct, DXS31-164, delayed tumor growth in Her2/neu 

transgenic animals. These findings support the use of this vaccine for treating malignant 

HER2/neu-overexpressing cells in pancreatic, colorectal, and breast cancers [77]. The blood of 

mice and humans affected by cancer contains many myeloid-derived suppressor cells (MDSCs). 

Using MDSCs as carriers, attenuated Listeria strains were delivered into tumor cells, resulting in 

significant reductions in the blood and primary tumor MDSC population accompanied by the 

conversion of the remaining subpopulation into immune stimulators. Consequently, high IL-12 

concentrations were produced and a drastic reduction in tumor growth and the number of 

metastases was observed [78,79]. Mice with metastatic breast cancer (4T1 model) were treated 

with an LM-based vaccine, which expressed tumor-related antigen Mage-b and carried α-
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galactosylceramide, which almost eliminated metastases without any evident toxicity. This live 

bacterial vaccine is another approach for treating metastatic breast cancer [80]. 

 

2.7 Lactococcus 

Bioactive phenazine compounds, purified from Lactococcus spp., demonstrated strong 

antifungal properties against Fusarium oxysporum, Penicillium chrysogenum, and Aspergillus 

niger [81]. These substances exhibited selective cytotoxicity against HeLa and MCF-7 cancer cell 

lines with IC50 values of 20 and 24 μg/mL, respectively [81]. Phenazines have been reported to act 

by interfering with topoisomerase I and II in cancer cells [82]. 

 

2.8 Other Organisms 

Intravenous injections of Proteus mirabilis strain RSM203 effectively treated Ehrlich 

carcinoma Line-1 [83]; however, the genus has not been explored extensively in recent years. The 

intra-tumoral injection of live Streptococcus pyogenes cells in a mouse model caused pancreatic 

cancer regression [84], whereas stimulating CD4+ lymphocytes with the S. pyogenes exotoxins 

SpeA, SpeB, and SpeC caused cytokine secretion [85]. Prodigiosin (2-methyl-3-pentyl-6-

methoxyprodigiosene), a heterocyclic tripyrrolic toxin produced by S. marcescens, has been shown 

to exhibit antitumor activity [86] and is an effective apoptotic agent against different cancer cell 

lines [87,88]. Prodigiosin has been reported to trigger apoptosis in HCT-116 cells utilized as a 

model for colorectal cancer, reducing the growth rate in a dose (100, 200, and 400 nM)- and time 

(48 h)-dependent manner by 16, 42 and 54 %, respectively [89]. Caulobacter crescentus has 

demonstrated similar antitumor effects in murine tumor models [90], whereas Rhodobacter 

sphaeroides has recently been identified as a tumor-targeting bacterium [91].  

 

3. Use of engineered strains to target tumors  

Diffusion barriers and pressure gradients prevent bacterial entry into eukaryotic tissue. Once 

inside the tumor, bacteria still need to multiply within specific microenvironments. Furthermore, 

unwanted pathogenicity must be removed from strains derived from pathogenic bacteria. 
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3.1. Quorum sensing 

Eukaryotic hosts can sense pathogen invasion and activate defense mechanisms. Free-living 

microbes produce toxins and antibacterials to attack other cells or resist antibacterials without 

estimating the extent of the attack on them; however, pathogenic microbes must evade host attacks 

and comprehend the ability of the host to resist their invasion [91-93]. At this point, microbes 

mount their counter-defense only after gauging the extent of attack by the host’s immune system 

[94-96]. This microbial mechanism for communicating and activating specific pathogenic genes 

in a cell density-dependent manner is termed quorum sensing (QS) (Fig. 3). In QS, these signal 

molecules form a complex with the receptor to transcribe virulence genes. To exploit QSS and 

selectively kill tumor cells, bacteria that can target, invade, and effectively lyse tumor cells must 

be used (Table 2). These organisms can be modified as improved anticancer agents that overcome 

the limitations of current cancer therapies [97]. 

 

3.2. Cell invasion 

The interaction between bacteria and cancer cells depends on the expression of invasion genes 

(Fig. 3). E. coli, engineered to express invasion genes from Yersinia pseudotuberculosis, was 

capable of invading cancer-derived cell lines such as HeLa, U2OS, and HepG2. Furthermore, InvC 

E. coli present the advantage of a single gene being able to initiate the adhesion and invasion of 

mammalian cells, including tumor cells [98]. Bacterial invasion efficiency was increased and 

better regulated when the invasion process was mediated by linking it to the hypoxia-responsive 

fdhF or arabinose-inducible araBAD promoters, especially under anaerobic conditions or in 0.02% 

arabinose, respectively. The whole circuit comprised the lux operon of Vibrio fischeri (for cell 

tracking), inv from Y. pseudotuberculosis, and the fdhF promoter or the arabinose operon. The 
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construct was activated in cervical carcinoma, hepato-carcinoma, and osteosarcoma cell lines 

[98,99]. After entering the tumor, the bacteria must perform specific functions, including 

producing antitumor agents, in a well-orchestrated manner [100,101]. Synthetic circuits can 

process the information being transmitted by environmental and nutritional signals, tuning the 

production of bioactive molecules via a range of systems, including oscillators, a toggle switch, or 

even a pulse generator [102-104]. 

 

3.3. Gene expression and circuits 

Genetic circuits under QS regulation have been evaluated in colorectal and other human 

cancers. An engineered biological system integrating three different circuits was designed to kill 

colon cancer cells in the following manner: (i) detect colon cancer cells via their specific 

carcinoembryonic antigen (CEA), (ii) QS-mediated conversion of 5-fluorocytosine into toxic 5-

fluorourocil along with the invasin gene, and (iii) a QS-mediated suicide cascade. These circuits 

allowed Magnetospirillum magneticum AMB-1 to invade targeted cancer cells and induce death 

in a density-dependent manner [105]. A genetic circuit that discriminates between cancerous and 

healthy cells via epidermal growth factor receptor (EGFR) expression on cancer cells has also been 

developed. It allows the chemotaxis of engineered bacterial (E. coli) cells towards them [106] and 

triggers an anticancer response above a threshold AI-2 density [107]. QS-mediated production of 

prodigiosin in engineered Serratia marcescens proved to be cytotoxic against various cancers 

[108].  

Beyond designing an entire circuit [109], certain synthetic acylhomoserine lactones (AHL) 

analogs with 3-oxo substitutions, such as 3-oxo-12-phenyldodecanoyl-L-homoserine lactone 

(HSL) [12b], have demonstrated high activity against cancer cells, including prostate carcinoma 
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cell line, PC3, and the colorectal carcinoma cell lines, H630 and H630-1 [110]. Synthetic 

compounds 5 and 87, which are AHL analogs, inhibited the proliferation of human oral squamous 

carcinoma cells derived from tongue cancer SAS cells and gingival carcinoma Ca9-22 cells [111]. 

The antitumor activities of chemically synthesized QS signaling molecules were tested in chronic 

myeloid leukemia (CML) K562 cells. Importantly, two analogs of AHL caused apoptosis via the 

activation of JNK and the induction of p21. This analog induced caspase-independent apoptosis in 

CML K562 cells [112].  

Synthetic AHL analogs examined against the cell lines of breast cancer (MCF-7), gastric 

cancer (MGC-803), hepatocellular carcinoma (SMMC-7721), and esophageal cancer (EC-9706), 

revealed that terminal phenyl groups with chalcone scaffolds had dramatically higher cytotoxicity 

than those with hydrophobic side chains. Compounds 10a–k and 14 with 4-amino chalcone 

scaffolds demonstrated high levels of inhibition against cancer cell lines and exhibited higher 

potency than 5-Fu and AHLs. The synthetic AHL analog compound 10i, which possessed a 3, 4, 

5-trimethoxy group, was the most potent, whereas analog 11e arrested the cell cycle of MCF-7 

cells in the G2/M phase and induced cellular apoptosis [113]. Cytotoxicity assays and the 

evaluation of NF-κB inhibitory activities against QS molecules and their analogs in Hodgkin's 

lymphoma cells (L428) revealed several compounds dose-dependently inhibited NF-κB signaling. 

Inhibitors such as ITC-12, ITC-Cl, and Br-furanone caused 50% NF-κB inhibition at 

concentrations between 4.1 and 12.8 µM, cytotoxicity against L428 cells with IC50 values between 

3.1 and 18.3 µM, and A549 adenocarcinoma cell migration inhibition at concentrations between 

2.6 and 7.9 µM. The inhibitory effects of these compounds on Hodgkin's lymphoma cells were 

attributed to the suppression of NF-κB subunits [114]. 
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The use of AHLs in cancer therapy has also been demonstrated through TRAIL utilization 

[115]. It has been hypothesized that QS-mediated oligopeptides could be used in cancer therapy 

as agonists or antagonists, since they are recognized by eukaryotic cells. Furthermore, their small 

structure facilitates tissue invasion, and there are similarities between the behavior of metastatic 

cells and QS-mediated bacterial cells [116].  

A QS-based circuitry was developed and expressed in E. coli to target and kill tumors [98]. 

The invasin gene (inv) from Y. pseudotuberculosis was used to induce the binding and invasion of 

β1-integrin-expressing tumors. Since cancer cells are hypoxic and have a high cellular density, the 

inv gene is regulated by the QS lux operon derived from V. fischeri; the system was induced under 

the anaerobic conditions necessary for formate dehydrogenase (fdhF) promoter induction. QS 

regulates the lux genetic circuit, with the promoter only triggering invasion under anaerobic 

conditions. The system was tested using metastatic breast cancer (HeLa), osteosarcoma (U2OS), 

and hepatocarcinoma (HepG2) cell lines to achieve toxin delivery to cancer cells [117]. A 

synchronized lysis circuit (SLC) was developed by integrating a QS autoinducer, AHL, and a lysis 

bacteriophage (φX174 E) in feedback loops in S. enterica and was tested using the HeLa cell line. 

Farnesol, known for regulating QS in the fungal pathogen Candida albicans, has been shown 

to significantly limit the proliferation of oral squamous cell carcinoma (OSCC) lines and promote 

apoptosis via signaling pathways, rendering it a potential therapeutic agent [118-120]. Farnesol 

also activates innate immune cells but suppresses adaptive immunity [121]. 

 

3.4. Bio-toxins as antitumor agents  

Natural toxins produced by QS can be utilized for cancer therapy. Bacteriocins such as colicin, 

nisin, pediocin, and pyocin produced by bacteria Klebsiella, Pediococcus, Lactobacillus, and 
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Pseudomonas, are biodegradable, non-immunogenic, and cause cancer cell-specific toxicity [122-

126]. 

Bacterial toxins, such as cytolysinA (ClyA) from the E. coli strain K-12, form pores in 

mammalian cell membranes and induce apoptosis. ClyA production in S. typhimurium and E. coli 

reduced tumor growth in mice [60,127-129], whereas injection of murine tumors with E. coli, 

engineered with α-hemolysin from Staphylococcus aureus, induced regression and necrosis 

[130,131]. These proteins induce apoptosis in mammalian cells and have higher toxicity to cancer 

cells [129,132-135]. Various cytotoxic cytokines have been tested as therapeutics, including the 

FAS ligand TRAIL and TNFα, both of which have shown efficacy against a wide range of cancers, 

including lung, breast, pancreas, colon, prostate, bladder, kidney, brain, and ovarian cancers [133-

138]. The major challenge to cytotoxic cytokine use is administration-associated toxicity; thus, an 

alternative strategy could be their localized production within tumors. 

 

3.5. Selecting the cancer killer 

A few criteria have been set for successful bacterial cancer therapy, some of which have been 

well defined, whereas others need to be improved upon [36]. The bioactive agent should be able 

to selectively invade the tumor, have high toxicity, be complementary to recognized therapies, 

have resistance to defense mechanisms (the immune system), be tunable, and should be degraded 

once its action is complete [17,139,140]. To date, a few bacteria have been identified with the 

ability to accumulate within cancer cells: (i) Clostridium, due to its obligate anaerobic nature, (ii) 

Salmonella and Escherichia, as facultative anaerobes, and (iii) Listeria, due to its ability to target 

immune cells. The ability of cancer cells to suppress the immune system prevents the clearance of 

bacterial cells [141]. 

Jo
ur

na
l P

re
-p

ro
of



16 

 

3.6. Incorporating synthetic biology 

Since the inv gene enables mammalian cell invasion, a Bacillus strain should be engineered 

with inv, its QSS, and lactonase to inactivate any non-cognate QS signals. Inducible phenotypes 

may be preferable to constitutive phenotypes; therefore, a bacterium with high plasticity for 

utilizing endogenous mechanisms could be a safe and effective anticancer therapy [142]. Synthetic 

biology has enabled the creation and exploitation of cells in a predictable manner; genomic 

reduction creating knockout mutants has been reported in a variety of bacteria, including Gram-

negative E. coli K-12, Haemophilus influenzae, P. aeruginosa PA14, and Acinetobacter baylyi 

ADP1, as well as  Corynebacterium glutamicum (Actinobacteria) and Bacillus subtilis 

(Firmicutes) [143]. The most intricate aspect of genomic reduction is predicting genes whose 

deletion will not prove detrimental; E. coli mutants lacking up to 29.7 % of the parental 

chromosome have been thoroughly evaluated, whereas only 271 genes of the total B. subtilis 

genome (4.2 Mbp) have proven essential. In B. subtilis, a 24.7 % reduction in the DNA content 

has been achieved and may produce bacterial cells with industrial applications [144-147]. Bacillus 

species, which are generally recognized as safe, have the potential to act as an alternative to E. coli 

[147]; however, their half-life and the burden of their uncontrolled growth must be reduced [99]. 

 

3.7. Fate of the killer organism 

An attractive anticancer therapeutic strategy is to restrict the expression of the killer gene after 

eradicating the cancer via a second ‘population control’ QS circuit, which can self-regulate the 

population density of the anticancer bacterium. To do so, de novo gene circuits must be designed 

to inhibit killer gene expression. Since bacteria possess suicide machinery activated by stress and 
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starvation, for example, the QSS-regulated coordinated killing of Streptococcus pneumoniae sub-

populations (Fig. 3) [148,149]. Although high concentrations of the killer protein cause cell death, 

low QS signal expression can help target private goods. A circuit has been constructed composed 

of two plasmids, pLuxRI2 and pluxCcdB3, in which the ccdB killer gene encodes a fusion protein 

that leads to cell death by inhibiting DNA gyrase. Since AHL serves as an external inducer to 

regulate this circuit, it can be influenced either by hydrolytic enzyme activity or by the increased 

pH of the medium [150].  

 

3.8. Intracellular QS mediated anticancer activity 

Bacterial QSS operates at the levels related to: (i) public goods - production of extracellular 

enzymes, and (ii) private goods – production of molecules within the cell [151]. QS mediated 

utilization of different carbon sources: (i) adenosine, and (ii) bovine serum albumin (BSA) [152]. 

BSA gets metabolized by QS dependent elastase produced extracellularly and can prove beneficial 

to the entire population (public goods) [153]. On the other hand, degradation of adenosine takes 

place with the help of LasR dependent nucleoside hydrolase (Nuh) in the periplasmic space 

[154,155]. It is thus useful only to producer cell and act as private goods. Bacteria after invading 

cancerous cell can produce a basal quantity of QS signal (AHLs), enough to activate the QSS 

related to metabolism of nucleoside (adenosine) and meet its energy needs. The signal, instead of 

being transported outside the cell can interact with the receptor to transcribe a toxin gene for 

producing toxin in quantities enough to lyse only one host cell. At this point, the bacteria can be 

made to activate the promoter of a “killer” gene, whose merchandise will be suicidal to the 

bacterial cell. The host organism will thus get rid of cancerous cell also the infectious bacteria. 
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4. Opportunities  

Bacterial therapies act via direct oncolysis or by modulating the immune system. Their major 

mechanism of action is exotoxin secretion or nutrient competition [37]; however, bacteria can also 

kill tumor cells by multiplying vigorously, which bursts the host cell, or by inducing apoptosis 

[49]. There are a few areas where opportunities exist for further exploitation: (i) genetically 

modified bacteria with the ability to colonize the tumor microenvironment [41,156], (ii) oncolytic 

bacteria, which induce cell death [130], and (iii) the induction of antigen responses [157-160]. 

Therefore, microbes are well-suited as therapeutic agents for metastatic disease. 

Since certain bacteria proliferate specifically in the necrotic or hypoxic tumor regions, they 

can be combined with cytotoxic therapies to achieve synergistic benefits [14,20,28]. Bacterial 

enzymes that activate prodrugs in the tumor microenvironment can also be utilized [161]. For 

example, genetically modified Salmonella expressing effector genes, such as herpes simplex virus 

thymidine kinase, are able to convert the prodrug ganciclovir into its toxic form by suppressing 

tumor growth. Listeria has also been used for the delivery of prodrug-converting enzymes, such 

as yeast cytosine deaminase, uracil phosphoribosyl transferase, and purine-nucleoside 

phosphorylase [162]. Recently, Bifidobacterium has been used as a system for delivering ILs and 

quantum dots, thus increasing the number of bacteria that can be used for targeting tumors [52-

56]. 

 

5. Clinical trials 

Considerable effort has been invested in testing anticancer agents; however, most research has 

been limited to model cancer lines [10]. Progress has been made in developing improved strategies, 

with many potential therapeutics moving toward clinical trials [17,163]. To date, genetically 
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modified bacteria have proven effective at inhibiting tumors in mice [134], whereas attenuated 

bacterial strains have also shown positive results in tumorous and non-tumorous animals [24]. Of 

these attenuated microbial therapies, the intravesical Bacillus Calmette-Guérin (BCG) vaccine has 

proven to be the most effective in reducing the recurrence and progression of non-muscle-invasive 

bladder cancer [164]. 

The ability of Clostridium spores to specifically target and colonize cancer cells was first 

demonstrated over six decades ago. Clinical trials of bacterial vaccines and bacteria for targeting 

tumors have provided vital information on systemic responses in cervical, liver, lung, metastatic 

colorectal, oropharyngeal, ovarian, pancreatic, and prostate cancers, as well as in solid tumors 

[165-167]. An intratumoral injection of C. novyi-NT spores had surprising survival benefits in a 

murine orthotopic brain model [168]. In contrast, other studies have demonstrated the induction of 

tumor regression by bacteria [27,169]. These preclinical experiments have enabled phase 1 

investigational clinical studies in cancer patients, with promising data generating confidence 

among patients and doctors that this treatment will become a reality [170]. The use of Clostridium-

directed enzyme prodrug therapy (CDEPT) is expected to circumvent issues related to wild-type 

strain utilization. The clinical evaluation of transferable genes with the ability to target the 

immunosuppressive hypoxic tumor microenvironment is likely to provide synergy with other 

immune therapies [171]. 

Salmonella strain VNP20009 administered to cancer patients with metastatic melanoma could 

not colonize in most cases in clinical trials. Thus, microbial-associated molecular patterns 

(MAMPs) like LPS, flagella, and CpG, supplied from sites in the tumor region might be the cause 

of the antitumor response, which was quite poor in the patients. The immunogenic response due 

to purified LPS or dead bacteria varies from high, in cases of colon carcinoma CT26, to low, in 
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the case of RenCa (a renal adenocarcinoma) [172]. Thus, the efficacy of a therapy depends on the 

potency of the bacterial infection and the immunogenicity of the tumor. A comparison of bacterial 

clearance from host systems showed that bacteria are more resistant to murines than humans, 

which encourages their trials in the latter [172]. In fact, per-exposure to S. typhimurium enables 

humans and dogs to generate immunity to some extent, whereas mice have been treated in 

pathogen-free conditions [173]. Furthermore, human beings are generally treated with 

chemotherapy, which is also likely to affect the immune system, leading to reduced 

responsiveness. Patients in the late stage of cancer are also highly immune-compromised. 

Nevertheless, only a few immune therapeutics are available in the clinic to date. In the first 

clinical trial on 39 human subjects affected by five different cancers, tumor shrinking was seen in 

five of them over two years. In 2010, chimeric antigen receptor therapy, or CAR therapy, targeted 

tumor cells by genetically modifying the patient’s T cells. This resulted in the disintegration of 

leukemic cells [174]. Immunotherapeutic agents have been well recognized because of their 

therapeutic responses; however, their success at the clinical level has been limited [175]. The 

potential of clinical responses to immunotherapy using engineered T lymphocytes based on 

adoptive cell transfer has been successful enough to evaluate their efficacy in the treatment of other 

malignancies [176]. 

L. monocytogenes selectively infect antigen-presenting cells, delivering tumor antigens to 

activate long-lasting, tumor-targeting cytolytic T lymphocyte (CTL)-mediated immunity. In 

preclinical cancer models, LM-based systems have demonstrated highly significant therapeutic 

efficacy [158-160,177-179]. Coupling 188-rhenium with Listeria via antibodies to deliver 

radioactivity reduced the cancerous cell mass of highly metastatic mouse pancreatic tumors 

[180,181]. In addition, the scope of bacterial anticancer therapies has been extended to naturally 
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occurring canine tumors [182,183]. However, there have been clinical trials with ambiguous 

outcomes [168,182].  

 

6.  Microbiota 

There is a diverse range of bacteria present within the human gut. Many intestinal bacterial 

communities are dysbiotic in various diseases, including colorectal cancer [184]. Helicobacter 

pylori is widely known to cause deadly infectious disease; however, it can also act as an anticancer 

agent, although the mechanism is still unknown [185]. In eubiosis, microbiota leads to homeostasis 

through two mechanisms: (i) the generation of metabolites such as short-chain fatty acids (SCFA), 

and (ii) by participating in immune responses [186,187]. Recently, two SCFA-producing strains 

present in the intestinal microbiota, Faecalibaculum rodentium and Holdemanella biformis, have 

been reported to show an anti-tumorigenic effect by inhibiting the activation of NFATAc3 and 

calcineurin [188]. Gut microbiota can also be used to overcome hypoxic conditions, invading and 

stimulating the innate immune system, increasing their efficacy as anticancer agents [12,189]. The 

microbiome of the human gut and breast tissue encounter many infectious bacteria, including 

Pseudomonas, Vibrio, Clostridium, Yersinia, and Streptococcus spp. [190,191]. The Pseudomonas 

aeruginosa QSS signal 3-oxo-C12-HSL blocks proliferation and induces apoptosis in human BC 

cell lines [192]. Furthermore, 3-oxo-C12-HSL has been documented to influence mammalian cell 

viability by downregulating thymidylate synthase and reducing the growth of H630 (human 

colorectal cancer) [193,194]. It inhibits cancer growth by increasing the activity of 5-

fluorodeoxyuridine, taxol, and tomudex, which regulate tubulin expression [195]. 3-oxo-C12-HSL 

also triggers cell death in mammalian lymphocytes. It is integrated into the plasma membrane and 

causes the dissolution of lipid domains, which leads to caspase-mediated apoptosis [196]. A few 
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gut microbiota oligopeptides also promote angiogenesis and influence metastases, a property that 

can be exploited to effectively treat cancer [197,198]. Therefore, probiotics could be used to 

modify the microbial composition and thereby help develop this strategy for anticancer therapy 

[199-201]. 

 

7. Bacteria-based microrobots 

Bacteria-based microrobots have been proposed to treat cancers. Biomedical microrobots have 

been developed by integrating micro-electromechanical systems (MEMS) with nano- and 

biotechnologies [202,203]. In this innovative theranostic methodology, bacteria are used as 

microactuators and microsensors to deliver drugs for treating solid tumors [204]. The therapeutic 

S. typhimurium strain was encapsulated in a biodegradable alginate microbead, and its flagellated 

strain was immobilized on its surface [204]. It protects bacteria from the host immune system 

[205].  

 

8. Alternatives to live bacterial therapies 

In addition, to live bacterial cells, non-living cell-based therapies using bacterial minicells, 

outer-membrane vesicles, and cell-wall complexes also appear to be beneficial [206-208]. For 

example, bacterial minicells with restricted metabolism can provide an effective platform for 

introducing limited genetic material, such as QS machinery and genes for producing predefined 

quantities of toxins. The concept of using an acute bacterial infection for the induction of a strong 

antitumor immune response has been gaining interest for improving treatment strategies; however, 

it has been challenging to provoke a safe and consistent therapeutic response. Subcutaneous 

administration of the immunotherapeutic peptide QBKPN, derived from inactivated Klebsiella, 
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induced antitumor innate immunity in a lung cancer model. The peptide worked alongside NK 

cells and the NKG2D pathway to increase the production of cytotoxic molecules, with a patient 

trial demonstrating the efficacy, safety, and tolerability of the system [209]. 

 

9. Challenges in using bacteria as antitumor agents 

The critical aspects of cancer management include (i) surgery, (ii) radiation, (iii) 

chemotherapy, and (iv) immunotherapy [13]. The FDA has approved the use of an immune-

checkpoint blockade (ICB) monotherapy to control several types of cancers; however, some 

patients do not respond to ICB agents. The basic reasons for this hindrance are: (i) the genetic 

make-up of the cancer cells, (ii) the host (immunosuppressive) environment, and (iii) poor 

anticancer cellular responses [13,210-214]. A few issues, which have been identified as critical for 

the success of microbial therapy, are the development of: 1) a predictive animal model, 2) cancer 

prophylactic therapies, and 3) applying Good Manufacturing Practices [12], which are a balance 

between cost, accuracy, and efficiency. 

 Another major challenge is regulation; while developing microbial therapies, it is important 

to restrict the spread of the therapeutic organism and post-treatment infections [12, 

https://www.fda.gov/downloads/biologicsbloodvaccines/guidancecomplianceregulatoryinformati

on/guidances/cellularandgenetherapy/ucm404087]. 

The use of microbes for cancer treatment holds great promise; however, implementation is 

hindered by: (i) lack of specificity, (ii) short half-life of the vector, (iii) limited tropism for cells 

presenting antigens, (iv) host immunity, and (v) development of antibodies towards viral coat 

proteins. For example, Mycoplasma hyorhinis and species of Shigella, Escherichia, Klebsiella, 

Salmonella, Citrobacter, and Serratia expressing cytidine deaminase (CDDL) have shown to 
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transform the chemotherapeutic drug gemcitabine into its inactive form, which contributes to 

resistance to cancer therapies [215]. Gut bacteria can modulate anticancer immune responses, 

tumor pathogenesis, chemotherapy resistance, and the adverse effects of chemotherapy [216,217]. 

 

10. Concluding remarks and future directions 

The feasibility of using bacteria as anticancer agents and replacing traditional cancer drugs 

remains unclear. The goal, although apparently straightforward, has remained elusive due to the 

high genetic and phenotypic variability of tumors. The areas requiring most attention include 

immune stimulation, controlled delivery, and the efficacy and safety of the approaches. 

Additionally, a greater synergy with other associated fields is necessary for successful 

implementation. An essential strength of these bacterial therapies is their potential to overcome 

drug resistance, a factor that limits the applicability of small-molecule anticancer therapies despite 

their long-term benefits. 
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Figure legends 

Fig. 1. Quorum sensing-mediated killing of cancer cells by bacteria. 

 

Fig. 2. Diversity of bacteria as potential anticancer agents; their targets and actions. 

 

Fig. 3. Proposed mechanism of cancerous cell death by quorum sensing-mediated bacterial toxin. 

A, Tumor. B, Bacterial cells at low cell density inside the tumor. C, Induction of quorum sensing 

in bacterial populations at the high cell density and expression of QS-mediated toxin production. 

D, Initiation of cancerous cell death by bacterial toxins. E, Lysis of cancerous cells and the 

initiation of bacterial suicide by the activation of killer genes. F, Complete lysis of tumor and 

bacteria. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Table 1 Bacteria used for inhibiting tumors 
 

Organisms Host Tumor References 

Clostridium novyi (NT) BALB/c Nude HCT116 [28] 

C57BL/6 B16 [28] 

BALB/c CT-26, RENCA [27] 

NZW VX2 

Salmonella typhimurium strain 

VNP20009  

Mice (Nude) Melanoma, breast, lung, colorectal cell 

lines 

[29,141] 

S. typhimurium strain LH430 BALB/c Nude SiHa (cc Xenograft) [34] 

BALB/c CMS5 (Sarcoma- Syngeneic) 

expressing human NY-ESO-I 

[30] 

C57BL/6 H22 (HCC- Syngeneric), RM1 [33,35] 

S. typhimurium (Auxotrophs) BALB/c CT-26 [20] 

DBA/2 P815 [21] 

Nude mice MARY-X [32] 

C57BL/6 B16G3.26 [64] 

BALB/c CT-26 

Rec. S. typhimurium producing 

toxin-HlyE 

BALAB/c CT-26,4T1 [127,129] 

Rec. S. typhimurium producing 

toxin - Stx2 

Nude mice B16, HCT1 16, HeLa [48] 

Rec. S. typhimurium producing 

antigen – Listeria monocytogenes 

lap217-225 (LM-p60) 

BALB/c WEHI-164 cells expressing Lm-p60 [31] 

Rec. S. typhimurium secreting 

murine death inducer – FasI 

BALB/c CT-26, D2F2 [133] 

Rec. S. typhimurium secreting 

murine death inducer – Trail 

BALB/c 4T1 [134] 

Escherichia coli strain K-12 BALB/c CT-26, 4T1 [60,128] 

E. coli strain Nissle 1917 BALB/c 4T1 [135] 

C57BL/6 B16 

Rec. E. coli expressing toxin - LLOa C57BL/6 MBL2, TRAMP-C [66] 
a Listeriolysin-O
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Table 2 Biotechnological applications of microbial quorum sensing systems as anticancer 

agents 
 

Organisms QSS/molecule 

involved 

Approaches Applications References 

Salmonella 

(Non- 

pathogenic)  

LuxI/LuxR  

(Vibrio fischeri) 

QS genes fused with invasion gene 

from Yersinia pestis and 

anticancerous protein 

Targeted killing of 

tumor cells  

[142] 

Escherichia 

coli  

 

AI-2b producing 

anti- Epidermal 

Growth Factor 

receptors 

nanofactories 

Bacteria by chemotaxis action of 

AI-2 colonizes cancerous cells and 

produces toxin 

Targeted killing of 

cancerous cells  

[107] 

3-oxo-C6-HSLc 

synthesizing and 

detecting QSSd 

Cancer stickybots: QS circuit 

fused with a toxin and a colon 

cancer cells specific carcino 

embryonic antigen detecting 

system 

Specific killing of 

colon cancer cells 

[106] 

Serratia 

marcescens 

SmaI/SmaR AHL mediated prodigiosin 

synthesis 

Treatment of 

cancer 

[108] 

Salmonella 

typhimurium 

LuxI/LuxR  

(V. fischeri) 

Arabinose induced PBAD promoter 

under QSS to produce anti-cancer 

drug molecules 

Inducible and 

specific anti-

cancerous system  

[109] 

Pseudomonas 

aeruginosa 

3-oxo-C12-HSL Downregulation of signal 

transducer and activator of 

transcription (STAT3) - Breast 

cancer (BR293, MCF-7, and 

MDA-MB-468) 

Cancer therapy [192] 

Cytoskeletal modifications 

resulting insusceptibility to 5-

fluoroUracil in Human colorectal 

cancer (H630) 

Mammalian cell 

viability 

[193] 

Synthetic 

AHLa 

3-oxo-C12-

phenyldodecanoyl-

L-HSL (Compound 

12b) 

Human colorectal carcinoma cell 

lines: (i) H630 (parental), (ii) 

H630-1 (5-fluorouracil resistant), 

and (iii) human prostate carcinoma 

cell line (PC3) 

Cancer therapy [110] 

AHLs (Compounds 

5 and 87) 

Tongue cancer cell line (SAS) and 

human gingival carcinoma cell line 

(Ca9-22)   

Cancer therapy [111] 

Candida 

albicans 

Farnesol Oral squamous cell carcinoma 

(OSCC) lines 

Anticancer 

therapeutic agent 

[119,121] 

a Acylhomserine lactone 
b Auto-inducer 
c Homoserine lactone 
d Quorum sensing system 
 

 

Jo
ur

na
l P

re
-p

ro
of


