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Molecular approaches in bioremediation
Thomas K Wood1,2,3

Bacteria have enormous catabolic potential for remediating

wastes; however, the interactions between bacteria and

pollutants are complex and suitable remediation does not

always take place. Hence, molecular approaches are being

applied to enhance bioremediation. Here, an overview is

provided of the recent advances in bioremediation by utilizing

rhizoremediation, protein engineering, metabolic engineering,

whole-transcriptome profiling, and proteomics for the

degradation of recalcitrant pollutants such as chlorinated

aliphatics and polychlorinated biphenyls as well as for binding

heavy metals.
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Introduction
Bioremediation

Bioremediation is the degradation of pollutants using

organisms, from bacteria to plants, or their derivatives.

The chief advantage of bioremediation is its reduced

cost compared to conventional techniques such as incin-

eration since the cost of remediation for all contaminated

sites in the USA alone is estimated to be $1.7 trillion [1].

In addition, bioremediation is often a permanent

solution (providing complete transformation of the pol-

lutant to its molecular constituents like carbon dioxide

and water) rather than a remediation method that trans-

fers wastes from one phase to another [1]. Unfortunately,

there are many man-made compounds that lack good

biological catalysts (there are 10 million described

organic compounds and biodegradation for most of them

has not been investigated [2]), and many instances

where good biocatalysts fail to transform pollutants in

the environment [3].

One advance in bioremediation to improve the stability of

the biocatalyst is to create a system where degradation

occurs in the area near the roots of plants known as the

rhizosphere; the term rhizoremediation was coined in

1998 in a study of the degradation trichloroethylene

(TCE) in the wheat rhizosphere by bacteria expressing

a stable, chromosomally encoded toluene ortho-monooxy-

genase (TOM) (Figure 1) [4��]. In rhizoremediation, the

bacteria degrade the pollutants while the plant roots

provide a niche for the microorganism and key nutrients.

The advantages of rhizoremediation include that the

plant roots provide a large surface area for bacterial

propagation and biofilm formation, that the roots trans-

port the bacteria through the contaminated soil, that the

roots provide a niche for the bacteria by providing nutri-

ents, and that the roots facilitate oxygen exchange [3].

The requirements for successful rhizoremediation in-

clude that the bacteria adhere well to seeds, that the

bacteria proliferate well in the root system, and that the

degradative pathways operate well in the rhizosphere [3].

Successful rhizoremediation systems have been estab-

lished for pollutants such as chlorinated ethenes, poly-

cyclic aromatic hydrocarbons, polychlorinated biphenyls

(PCBs), fuels, metals, and parathion [1]. This review

explores the use of molecular approaches designed to

overcome obstacles to successful bioremediation and

focuses on rhizoremediation as a bioremediation method

that is gaining importance and on the degradation of

chlorinated ethenes since they are among the most-fre-

quently encountered groundwater pollutants [5].

Review
Protein engineering

Directed evolution or DNA shuffling [6,7,8,9��] is a

powerful mutagenesis technique that mimics the natural

molecular evolution of genes in order to efficiently re-

design them. Its power lies in that it can introduce multiple
mutations into a gene in order to create new enzymatic

activity (found by a suitable method of selection); it is still

difficult (if not impossible) to rationally predict the amino

acid changes that occur during DNA shuffling and that are

necessary to create the new activity. These mutations are

found both near and far from the active site [10]. This

method was developed by Willem Stemmer of Affymax

Research Institute (now Maxygen) and consists of using

PCR without oligo primers to re-assemble a gene (or a

family of genes) from random 10 to 300 bp DNA frag-

ments generated by first cleaving the gene with DNase.

After re-assembling the original gene from these 300 bp
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fragments using a series of homologous recombinations

and extensions with dNTPs and polymerase, normal PCR

(with nested oligos) is performed using traditional oligos

to yield the full-length gene with random mutations. The

mutations arise from infidelity in the assembly process,

PCR infidelity (polymerase base-reading errors), and

errors introduced in the assembly process by insertion

of mutated gene fragments (controlled by the researcher

by adding specific oligos or DNA fragments from related

but not identical genes). The advantages of this method

are that DNA shuffling introduces mutations much more

efficiently than other methods (e.g., unlike DNA shuf-

fling, error-prone PCR and oligonucleotide cassette muta-

genesis are not combinatorial), and it may be used to

create a chimeric gene by reassembling closely related

genes (family shuffling). This method has been used to

increase b-lactamase antibiotic activity by 32 000-fold

[9��], to increase the fluorescence signal of the green

fluorescent protein by 45-fold [7], and to evolve a fuco-

sidase from b-galactosidase [11].

After random protein engineering, saturation mutagen-

esis is extremely powerful in creating new catalysts for

bioremediation as it can be used to introduce all possible

mutations at key sites or adjacent sites to explore a larger

fraction of the protein sequence space that can be

achieved with site-directed mutagenesis [12]. It can

provide much more comprehensive information than

can be achieved by single-amino acid substitutions as

well as overcome the drawbacks of random mutagenesis

in that a single mutation randomly placed in codons

generates on average only 5.6 out of 19 possible substi-

tutions [13]. To use saturation mutagenesis effectively, it

is necessary to determine the number of independent

colonies that must be screened to ensure that each

possible codon has been tested; hence, a multinomial

distribution equation was developed to predict the num-

ber of colonies required as a function of the number of

sites mutated assuming that 64 codons are randomized at

each position [14��]. For example, for saturation muta-

genesis of one site, 292 colonies need to be screened for a

probability of 0.99 that all 64 codons are sampled, and if

two residues are subject to simultaneous saturation muta-

genesis, 342 independent clones need to be sampled to

ensure the 0.99 probability that all the possible outcomes

have been checked [14��]. Like DNA shuffling, satur-

ation mutagenesis requires a suitable selection or screen-

ing method [15].

DNA shuffling has been used successfully to create a

biocatalyst with higher degradation rates for chlorinated

ethenes (trichloroethylene, 1,1-dichlorethylene, and

trans-dichloroethylene) and polyaromatic hydrocarbons

(naphthalene, phenanthrene, fluorene, and anthracene)

[16�]. Random mutagenesis over 3.5 kb that included

five of the six genes that encode TOM of Burkholderia
cepacia G4 led to the discovery of an important gate

residue in the large subunit of the hydroxylase, valine

106 [16�]. The variant with the V106A mutation was

called TOM-Green [16�] since it caused the complex

fermentation broth to turn green owing to the formation

of colored indigoid compounds that form owing to oxi-

dation of indole by TOM-Green [17]. Saturation muta-

genesis was then utilized at position V106 to increase the

activity of this enzyme for chloroform [14��]. A combi-

nation of DNA shuffling and saturation mutagenesis was

also used to evolve another monooxygenase, toluene-o-
xylene monooxygenase from P. stutzeri OX1 (renamed

Pseudomonas sp. OX1 [18]) for enhanced chlorinated

ethene degradation [19] and to discover new residues

for accelerating p-nitrophenol degradation [10]. The

techniques of DNA shuffling and saturation mutagen-

esis have also been utilized to evolve dioxygenases and

monooxygenases for the bioremediation of nitroaro-

matics such as dinitrotoluenes (including 2,3-dinitroto-

luene and 2,5-dinitrotoluene that previously could not

be degraded [20�]), 4-methyl-5-nitrocatechol (one of the

first examples of the evolution of an enzyme for the

second step of a biodegradative pathway [21]), aminoni-

trotoluenes [22�], and nitro-phenols/methoxy-phenols

[23]. The insights gained from these biodegradation

studies with oxygenases are important also for biocata-

lysis and green chemistry; for example, by discovering

important residues in the active site of toluene mono-

oxygenases, it is now possible to control regio-specific

oxidation toluene [24��].
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Figure 1

Rhizoremediation of trichloroethylene in a microcosm: root-colonizing

Pseudomonas fluorescens was engineered to express toluene

o-monooxygenase of Burkholderia cepacia G4 from its chromosome

[4��]. The resulting strain degraded 64% of the added trichloroethylene

as it grew on wheat roots.
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In one of the more successful uses of protein engineering

for bioremediation, bacteria were created that utilize

1,2,3-trichloropropane (TCP) as a carbon and energy

source [25��]. After trying unsuccessfully to use bacterial

enrichment cultures to find a TCP-utilizing strain, the

authors evolved haloalkane dehalogenase from Rhodococ-
cus sp. m15-3 to allow more productive binding of TCP in

the active site then added this improved enzyme to

Agrobacterium radiobacter AD1 that utilizes the product

of the haloalkane dehalogenase reaction.

One of the more clever screening schemes was devised

for evolving organophosphorus hydrolase for organopho-

sphorus pesticide degradation; the enzyme was displayed

on the exterior of Escherichia coli using a truncated ice

nucleation protein (so mass transfer limitations are

removed) and active colonies were isolated on the basis

of the formation of yellow p-nitrophenol from methyl

parathion [26��]. After two rounds of DNA shuffling, an

organophosphorus hydrolase variant was identified with

25-fold greater degradation of the pesticide methyl para-

thion.

Family and genome shuffling for PCBs and

pentachlorophenol

Family shuffling applies DNA shuffling to groups of

related genes to combine them in a manner that accel-

erates directed evolution [27]. One of the first appli-

cations of protein engineering for bioremediation was

the family shuffling evolution of the large subunit of

biphenyl dioxygenase (bphA) from P. pseudoalcaligenes
KF707 and B. cepacia LB400 [28�]; the hybrid enzymes

had enhanced degradation of PCBs, biphenyl com-

pounds, toluene, and benzene. This method has also

been applied for the degradation of PCBs by shuffling

crucial segments of bphA genes from Burkholderia sp.

strain LB400, Comamonas testosteroni B-356, and Rhodo-
coccus globerulus P6 [29]. Biphenyl dioxygenase variants

were identified with activity to a broader range of PCBs

than the parent enzymes.

Genome shuffling recombines the chromosomes of sev-

eral bacteria to improve activity of the whole organism

[30]. This method has been applied to bioremediation for

the degradation of pentachlorophenol to create strains

that could grow in 10-fold higher concentrations of penta-

chlorophenol and that degrade completely concentrations

that could not be used by the wild-type strain [31�]. This

work is also interesting since it applied genome shuffling

to a Gram-negative strain.

Metabolic engineering for chlorinated aliphatics

Beyond optimizing a single enzyme, metabolic engineer-

ing involves redirecting the cell’s metabolism to achieve a

particular goal using recombinant engineering [32]. One

of the first and finest examples of this approach is the

metabolic engineering of Pseudomonas sp. B13; five differ-

ent catabolic pathways from three different bacteria were

combined to allow for degradation of methylphenols and

methylbenzoates in a single organism [33��].

Metabolic engineering has also been used to create strains

that degrade chlorinated ethenes more readily through

the use of several cloned enzymes. The rationale for this

metabolic engineering is that the Gibbs free energy

change for aerobic degradation of chlorinated ethenes

to water, carbon dioxide, and HCl, indicates growth on

nearly all chlorinated aliphatics is thermodynamically

possible; for example, the Gibbs free energy change for

the aerobic mineralization of cis-1,2-dichloroethylene, cis-
DCE, is �1143 kJ/mol [34] and even fully chlorinated

ethane may be degraded [35�]. If the reactive intermedi-

ates may be effectively detoxified, the main biochemical

factor that hampers chlorinated ethenes from supporting

cell growth is the lack of appropriate enzymes to harvest

their energy. Hence it is feasible to construct bacteria that

grow on these chlorinated ethenes and create a niche for

their aerobic degradation. Currently, the aerobic degra-

dation of chlorinated ethenes is fortuitous and provides no

benefit to the cell; in fact, it leads to cell death and thus is

selected against (Figure 2).

The toxic epoxides generated during the aerobic biode-

gradation of chlorinated ethenes limit their transform-

ation. Hydrolysis of the toxic epoxide by epoxide

hydrolases represents the major biological detoxification

strategy; however, chlorinated epoxyethanes are not

accepted by known bacterial epoxide hydrolases. The

epoxide hydrolase from A. radiobacter AD1 (EchA), which

enables growth on epichlorohydrin, was therefore evolved

to accept cis-1,2-dichloroepoxyethane as a substrate by

accumulating beneficial mutations from three rounds of

saturation mutagenesis at three selected active site resi-

dues: F108, I219, and C248 [36��]. The EchA F108L/

I219L/C248I variant co-expressed with DNA-shuffled

TOM (TOM-Green), which initiates attack on the chlori-

nated ethene, allowed for the degradation of cis-DCE at

low concentrations (6.8 mM) (wild-type EchA has no

activity at this concentration) and enhanced degradation

10-fold at high concentrations (540 mM) (Figure 2). For

complete degradation of cis-DCE to chloride ions, the

apparent Vmax/Km for the recombinant E. coli strain

expressing the EchA F108L/I219L/C248I variant was

increased over five-fold as a result of the evolution of

EchA; hence, the addition of seven foreign genes led to

greater degradation of chlorinated aliphatics.

A similar metabolic engineering approach for degrading

chlorinated ethenes using a glutathione S-transferase

(GST) and an overexpressed E. coli mutant g-glutamyl-

cysteine synthetase (GSHI*) instead of the engineered

epoxide hydrolase has also been implemented (Figure 2)

[37]. A recombinant E. coli strain less sensitive to the toxic

effects of cis-DCE, TCE, and trans-1,2-dichloroethylene

574 Chemical biotechnology
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(trans-DCE) degradation was created by engineering a

novel pathway consisting of eight genes including DNA-

shuffled TOM-Green, a newly discovered glutathione S-

transferase (GST) from Rhodococcus AD45 (IsoILR1)

found to have activity toward epoxypropane and cis-
DCE epoxide, and an E. coli mutant g-glutamylcysteine

synthetase (GSHI*) that is not subject to feedback

inhibition. The recombinant strain in which TOM-

Green and IsoILR1 were co-expressed on separate plas-

mids degraded 1.9-fold more cis-DCE compared to a

strain that lacked IsoILR1. In the presence of IsoILR1

and TOM-Green, the addition of GSH1* resulted in a 7-

fold increase in the intracellular GSH concentration and a

3.5-fold improvement in the cis-DCE degradation rate

based on chloride release, a 1.8-fold improvement in the

trans-DCE degradation, and a 1.7-fold improvement in

the TCE degradation rate. In addition, cells expressing

IsoILR1 and GSHI* grew 78% faster in rich medium

than a strain lacking these two heterologous genes [37].

Therefore, this method was successful in reducing the

toxicity related to aerobic degradation of chlorinated

aliphatics.

Metabolic engineering for mixed wastes

Metabolic engineering has also been used successfully to

handle mixtures of pollutants. For example, many super-

fund sites are contaminated with both chlorinated

ethenes such as TCE and heavy metals; hence, a prom-

ising strategy to address these mixed-waste situations is

the use of TCE-degrading rhizobacteria that will thrive in

soil heavily polluted with heavy metals. To achieve this

goal, the metal-binding peptide, EC20, a synthetic phy-

tochelatin with general structure (Glu-Cys)20, was

expressed on the cell surface of rhizobacteria engineered

to degrade TCE (strain Pb2-1 and Rhizobium strain

10320D [38]), resulting in strains that both accumulated

metal and degraded TCE [39]. EC20 was displayed on

the cell surface of Pseudomonas using an ice-nucleation

protein anchor and resulted in 6-fold higher cadmium

accumulation. As expected, the TCE degradation rate

was reduced in the presence of cadmium for cells without

EC20 expression; however, expression of EC20 (higher

cadmium accumulation) completely restored TCE degra-

dation. These results demonstrated that EC20 expression

enhanced not only cadmium accumulation but also

Molecular approaches in bioremediation Wood 575

Figure 2

Metabolic engineering to enhance cis-dichloroethylene (cis-DCE) mineralization by cloning an evolved toluene o-monooxygenase (TOM-Green) to

initiate oxidation of cis-DCE with either (i) an evolved epoxide hydrolase (EchA) that adds water to the epoxide bond to detoxify it [36��] or (ii)

glutathione S-transferase (IsoILR1) along with an overexpressed E. coli mutant g-glutamylcysteine synthetase (GSHI*) [37]; GSHI* overproduces

glutathione that is added to the epoxide bond by IsoILR1. Steps 1 and 2 are the two possible spontaneous transformation pathways for cis-DCE

epoxide, while step 3 and step 4 represent two major detoxification strategies in which cis-DCE epoxide may be biologically converted by either an

epoxide hydrolase (EchA) or glutathione S-transferase (IsoILR1). Figure used with permission from ASBMB [36].

www.sciencedirect.com Current Opinion in Biotechnology 2008, 19:572–578
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reduced the toxic effect of cadmium on TCE degradation

for the bacterium. Expressing EC20 on another rhizobac-

terium, P. putida 06909, has also been shown to reduce

cadmium toxicity to sunflowers and to increase cadmium

accumulation [40].

Whole-transcriptome profiling to facilitate

rhizoremediation

Whole-transcriptome profiling using DNA microarrays

has the advantage that the relative amount of transcripts

from the whole genome may be easily determined com-

pared to such techniques like proteomics that, in general,

are not able to discern the identity readily for all proteins

(e.g., membrane-bound proteins are problematic and

roughly 2/3 of E. coli proteins have not been identified

by non-gel proteomic techniques [41]). However, tran-

scriptome profiling often assumes that changes in tran-

scription may be used to predict changes in protein

formation that may not always be correct but is often

true for procaryotes since regulation occurs primarily at

the level of transcription.

To understand the metabolism of bacteria in the rhizo-

sphere, several groups have begun to utilize whole-gen-

ome profiling. The first whole-transcriptome study of

bacteria and plants was that of Erwinia chrysanthemi on

African violet leaves in which several virulence genes

were identified [42]. The first whole-transcriptome study

of bacteria in the rhizosphere was conducted with poplar

tree roots and pathogenic Pseudomonas aeruginosa in which

seven novel bacterial virulence genes were identified

[43��]; note that this manuscript also investigated the

whole-transcriptome response of the plant to the patho-

genic bacterium. For bioremediation, whole-transcrip-

tome profiling has been used to determine mutualistic

interactions in the rhizosphere for strains relevant for

bioremediation; for example, 90 rhizosphere upregulated

genes were identified for P. putida growing on corn roots

[44��].

Bacteria have also been selected to perform well in rhizor-

emediation; for example, to facilitate the degradation of

the pesticide lindane (g-hexachlorocyclohexane) as well as

the related compounds d-hexachlorocyclohexane and b-

hexachlorocyclohexane, Ramos and co-workers utilized a

double enrichment approach to isolate four Sphingomonas
strains that degrade lindane and that proliferate in the corn

rhizosphere whereas the parent strains could not colonize

the plant [45]. This approach holds promise for combining

bacteria with strong degradation potential with suitable

plant hosts.

Proteomics in bioremediation

Although whole-transcriptome approaches are important,

this approach is unable to show that changes in transcrip-

tion lead to changes in protein levels and frequently

changes in proteins are necessary for enhanced bioreme-

diation. Hence, one of the best techniques for gauging

changes in metabolism is proteomics, that is, determining

the complete change in protein production in the cell.

One of the first attempts to gauge the impact of metabolic

engineering in bioremediation was a proteomics study of

TCE degradation in which two dimensional electropho-

resis (2-DE) was used to detect changes in the proteome

of E. coli cells upon expressing toluene o-monooxygenase

(TOM) that converts TCE into an reactive TEC epoxide;

eight new proteins were identified in TOM-containing

cells and 12 proteins not detected in those cells were

present in the host strain [46]. Exposure of TOM-contain-

ing cells to TCE led to the synthesis of only one new

protein and the loss of 10 proteins. Therefore, metabolic

engineering (addition of the TOM enzyme) has a sub-

stantial and complex impact on the physiology of these

cells that was clearly revealed using a proteomic

approach.

A more thorough proteome investigation [48��] was con-

ducted on the basis of the metabolic engineering of E. coli
to degrade cis-1,2-dichloroethylene (cis-DCE) as shown in

Figure 2 and described above. The strains express the six

genes of an evolved toluene o-monooxygenase (TOM-

Green, which form a reactive epoxide) with either (1) g-

glutamylcysteine synthetase (GSHI*, which forms gluta-

thione) and the glutathione S-transferase IsoILR1 from

Rhodococcus AD45 (which adds glutathione to the reactive

cis-DCE epoxide) or (2) with an evolved epoxide hydro-

lase from A. radiobacter AD1 (EchA F108L/I219L/C248I

that converts the reactive cis-DCE epoxide to a diol). The

impact of this metabolic engineering for bioremediation

was assessed by investigating the changes in the pro-

teome through a quantitative shotgun proteomics tech-

nique (iTRAQ) by tracking the changes due to the

sequential addition of TOM-Green, IsoILR1, and GSHI*

and due to adding the evolved EchA vs. the wild-type

enzyme to TOM-Green. For the TOM-Green/EchA

system, nine proteins out of 268 identified proteins were

differentially expressed in the strain expressing EchA

F108L/I219L/C248I relative to wild-type EchA. For

the TOM-Green/IsoILR1/GSHI* system, the expression

level of 49 proteins was changed out of 364 identified

proteins. It was determined that the metabolic engineer-

ing that leads to enhanced aerobic degradation of cis-DCE

and reduced toxicity from cis-DCE epoxide results in

enhanced synthesis of glutathione coupled with an

induced stress response as well as repression of fatty acid

synthesis, gluconeogenesis, and the tricarboxylic acid

cycle.

Concluding remarks
The success of bioremediation involves complex inter-

actions and so it is envisioned that sophisticated meta-

bolic techniques will continued to be implemented to

advance the field. Although a tremendous amount of work

576 Chemical biotechnology
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remains to be performed, significant advances have been

made through protein engineering and through metabolic

engineering for bioremediation. However, as shown by

this brief review, even though whole-transcriptome pro-

filing and proteomics are utilized routinely in many dis-

ciplines, they remain to be utilized extensively in

bioremediation. Furthermore, it is important to ensure

engineered strains designed for field use are competitive;

chromosomal integration of genes has been shown to be

effective in this regard [38], and rhizoremediation pro-

vides a niche for these engineered bacteria. Chromosomal

integration also limits horizontal gene transfer [47] but

this should also be verified.
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